【題目】數(shù)學(xué)的對稱美在中國傳統(tǒng)文化中多有體現(xiàn),譬如如圖所示的太極圖是由黑白兩個魚形紋組成的圓形圖案,充分展現(xiàn)了相互轉(zhuǎn)化、對稱統(tǒng)一的和諧美.如果能夠?qū)A的周長和面積同時平分的函數(shù)稱為這個圓的“優(yōu)美函數(shù)”,下列說法正確的是( )

A.對于任意一個圓,其“優(yōu)美函數(shù)”有無數(shù)個

B.可以是某個圓的“優(yōu)美函數(shù)”

C.正弦函數(shù)可以同時是無數(shù)個圓的“優(yōu)美函數(shù)”

D.函數(shù)是“優(yōu)美函數(shù)”的充要條件為函數(shù)的圖象是中心對稱圖形

【答案】ABC

【解析】

利用“優(yōu)美函數(shù)”的定義判斷選項,正確,函數(shù)的圖象是中心對稱圖形,則函數(shù)是“優(yōu)美函數(shù)”,但是函數(shù)是“優(yōu)美函數(shù)”時,圖象不一定是中心對稱圖形,舉出反例,可判斷選項錯誤.

解:對于:過圓心的直線都可以將圓的周長和面積同時平分,

所以對于任意一個圓,其“優(yōu)美函數(shù)”有無數(shù)個,故選項正確;

對于:因?yàn)楹瘮?shù)圖象關(guān)于原點(diǎn)成中心對稱,

所以將圓的圓心放在原點(diǎn),則函數(shù)是該圓的“優(yōu)美函數(shù)”,

故選項正確;

對于:將圓的圓心放在正弦函數(shù)的對稱中心上,

則正弦函數(shù)是該圓的“優(yōu)美函數(shù)”,故選項正確;

對于:函數(shù)的圖象是中心對稱圖形,

則函數(shù)不一定是“優(yōu)美函數(shù)”,如;

但是函數(shù)是“優(yōu)美函數(shù)”時,圖象不一定是中心對稱圖形,

如圖所示:

,

所以函數(shù)的圖象是中心對稱圖形是函數(shù)是“優(yōu)美函數(shù)”

的不充分不必要條件,故選項錯誤,

故選:ABC

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線 與圓相交的弦長等于橢圓 )的焦距長.

(1)求橢圓的方程;

(2)已知為原點(diǎn),橢圓與拋物線)交于兩點(diǎn),點(diǎn)為橢圓上一動點(diǎn),若直線軸分別交于、兩點(diǎn),求證: 為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某外賣企業(yè)兩位員工今年月某天日派送外賣量的數(shù)據(jù)(單位:件),如莖葉圖所示針對這天的數(shù)據(jù),下面說法錯誤的是( )

A.阿朱的日派送量的眾數(shù)為B.阿紫的日派送量的中位數(shù)為

C.阿朱的日派送量的中位數(shù)為D.阿朱的日派送外賣量更穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)雙曲線的上焦點(diǎn)為,上頂點(diǎn)為,點(diǎn)為雙曲線虛軸的左端點(diǎn),已知的離心率為,且的面積.

(1)求雙曲線的方程;

(2)設(shè)拋物線的頂點(diǎn)在坐標(biāo)原點(diǎn),焦點(diǎn)為,動直線相切于點(diǎn),與的準(zhǔn)線相交于點(diǎn),試推斷以線段為直徑的圓是否恒經(jīng)過軸上的某個定點(diǎn)?若是,求出定點(diǎn)的坐標(biāo);若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,橢圓的離心率為,其左頂點(diǎn)在圓.

(1)求橢圓的方程;

(2)直線與橢圓的另一個交點(diǎn)為,與圓的另一個交點(diǎn)為.

當(dāng)時,求直線的斜率;

是否存在,使?若存在,求出直線的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】手機(jī)作為客戶端越來越為人們所青睞,通過手機(jī)實(shí)現(xiàn)衣食住行消費(fèi)已經(jīng)成為一種主要的消費(fèi)方式.在某市,隨機(jī)調(diào)查了200名顧客購物時使用手機(jī)支付的情況,得到如下的2×2列聯(lián)表,已知從使用手機(jī)支付的人群中隨機(jī)抽取1人,抽到青年的概率為.

(I)根據(jù)已知條件完成2×2列聯(lián)表,并根據(jù)此資料判斷是否有99.5%的把握認(rèn)為“市場購物用手機(jī)支付與年齡有關(guān)”?

2×2列聯(lián)表:

青年

中老年

合計

使用手機(jī)支付

120

不使用手機(jī)支付

48

合計

200

(Ⅱ)現(xiàn)采用分層抽樣的方法從這200名顧客中按照“使用手機(jī)支付”和“不使用手機(jī)支付”抽取一個容量為10的樣本,再從中隨機(jī)抽取3人,求這三人中“使用手機(jī)支付”的人數(shù)的分布列及期望.

附:

0.05

0.025

0.010

0.005

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時,函數(shù)的圖象恒不在軸的上方,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:對于任意,仍為數(shù)列中的項,則稱數(shù)列為“回歸數(shù)列”.

1)己知(),判斷數(shù)列是否為“回歸數(shù)列”,并說明理由;

2)若數(shù)列為“回歸數(shù)列”,,,且對于任意,均有成立.①求數(shù)列的通項公式;②求所有的正整數(shù)s,t,使得等式成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩隊進(jìn)行籃球決賽,采取五場三勝制(當(dāng)一隊贏得三場勝利時,該隊獲勝,決賽結(jié)束). 根據(jù)前期比賽成績,甲隊的主客場安排依次為主主客客主”. 設(shè)甲隊主場取勝的概率為0.6,客場取勝的概率為0.5,且各場比賽結(jié)果相互獨(dú)立,則甲隊以3:1獲勝的概率為(

A.0.15B.0.21C.0.24D.0.30

查看答案和解析>>

同步練習(xí)冊答案