1.為了普及環(huán)保知識,增強(qiáng)環(huán)保意識,某大學(xué)從大學(xué)理工類專業(yè)的A班和文史專業(yè)的B班各抽取20名同學(xué)參加環(huán)保知識測試,統(tǒng)計(jì)得到成績與專業(yè)的列聯(lián)表:
優(yōu)秀非優(yōu)秀總計(jì)
A班14620
B班71320
總計(jì)211940
附:參考公式及數(shù)據(jù):
①K2統(tǒng)計(jì)量:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$(其中n=a+b+c+d);
②獨(dú)立性檢驗(yàn)的臨界值表:
P(K≥k00.0500.010
k03.8416.635
( 。
A.有99%的把握認(rèn)為環(huán)保知識測試成績與專業(yè)有關(guān)
B.有99%的把握認(rèn)為環(huán)保知識測試成績與專業(yè)無關(guān)
C.有95%的把握認(rèn)為環(huán)保知識測試成績與專業(yè)無關(guān)
D.有95%的把握認(rèn)為環(huán)保知識測試成績與專業(yè)有關(guān)

分析 根據(jù)表中數(shù)據(jù)計(jì)算統(tǒng)計(jì)量K2,參考臨界數(shù)據(jù)得出結(jié)論.

解答 解:根據(jù)表中數(shù)據(jù),計(jì)算統(tǒng)計(jì)量
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$=$\frac{40{×(14×13-7×6)}^{2}}{20×20×21×19}$≈4.912>3.841,
參考臨界數(shù)據(jù)知,有95%的把握認(rèn)為環(huán)保知識測試成績與專業(yè)有關(guān).
故選:D.

點(diǎn)評 本題考查了獨(dú)立性檢驗(yàn)的應(yīng)用問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.給出下列等式:$\sqrt{2}=2cos\frac{π}{4}$,$\sqrt{2+\sqrt{2}}=2cos\frac{π}{8}$,$\sqrt{2+\sqrt{2+\sqrt{2}}}=2cos\frac{π}{16}$,…請從中歸納出第n(n∈N*)個(gè)等式:$\underbrace{\sqrt{2+\sqrt{2+…+\sqrt{2}}}}_{n個(gè)根號}$=$2cos\frac{π}{{{2^{n+1}}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某四棱臺的三視圖如圖所示,則該四棱臺的體積是( 。
A.7B.6C.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系式xOy中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1(-c,0)、F2(c,0),已知(1,e)和(e,$\frac{\sqrt{3}}{2}$)都在橢圓上,其中e為橢圓的離心率.
(1)求橢圓C的方程;
(2)過點(diǎn)F2的直線l與橢圓C相交于P,Q兩點(diǎn),且$\overrightarrow{P{F}_{2}}$•$\overrightarrow{{F}_{1}Q}$+$\overrightarrow{{F}_{1}{F}_{2}}$•$\overrightarrow{Q{F}_{2}}$=4,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,a,b,c分別為A、B、C的對邊,且滿足2(a2-b2)=2accosB+bc
(1)求A
(2)D為邊BC上一點(diǎn),CD=3BD,∠DAC=90°,求tanB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列命題中,正確的是(  )
A.若a>b,c>d,則ac>bdB.若ac>bc,則a>b
C.若a>b,c>d,則a-c>b-dD.若$\frac{a}{{c}^{2}}$<$\frac{{c}^{2}}$,則a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,b(1-2cosA)=2acosB.
(1)若b=2,求c的值;
(2)若a=1,tanA=2$\sqrt{2}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.研究性學(xué)習(xí)小組要從6名(其中男生4人,女生2人)成員中任意選派3人去參加某次社會調(diào)查.
(Ⅰ)在男生甲被選中的情況下,求女生乙也被選中的概率;
(Ⅱ)設(shè)所選3人中女生人數(shù)為ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下列函數(shù)中,周期為π,且以直線x=$\frac{π}{3}$為對稱軸的是( 。
A.$y=sin(\frac{x}{2}+\frac{π}{3})$B.$y=sin(2x-\frac{π}{6})$C.$y=cos(2x-\frac{π}{6})$D.$y=tan(x+\frac{π}{6})$

查看答案和解析>>

同步練習(xí)冊答案