(12分)如圖,設(shè)是橢圓的左焦點,直線為對應(yīng)的準(zhǔn)線,直線 與軸交于點,為橢圓的長軸,已知,且
(1)求橢圓的標(biāo)準(zhǔn)方程;(2)求證:對于任意的割線,恒有
(3)求三角形△ABF面積的最大值.
(Ⅰ)    (Ⅱ)略   (Ⅲ)
(1)∵,∴,又∵,∴,
,∴橢圓的標(biāo)準(zhǔn)方程為.---(4分)
(2)當(dāng)的斜率為0時,顯然=0,滿足題意,
當(dāng)的斜率不為0時,設(shè)方程為
代入橢圓方程整理得:
,.----------------------------6分

 ,

,從而
綜合可知:對于任意的割線,恒有.………------------------(8分)
(3),
即:,
當(dāng)且僅當(dāng),
(此時適合于的條件)取到等號.
∴三角形△ABF面積的最大值是.……--(12分)
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
(1)求軌跡E的方程;
(2)若直線l過點F2且與軌跡E交于P、Q兩點,
①無論直線繞點怎樣轉(zhuǎn)動,在軸上總存在定點,使恒成立,求實數(shù)的值;
②過作直線的垂線
的取值范圍

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

=-1的焦點為頂點,頂點為焦點的橢圓方程為(    )
A.=1
B.=1
C.=1
D.=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知點,則線段AB的方程為(    )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知兩點M(1,)、N(-4,-),給出下列曲線方程:
①4x+2y-1="0," ②x2+y2="3," ③+y2="1," ④y2=1,在曲線上存在點P滿足|MP|=|NP|的所有曲線方程是_________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)    
在橢圓上,直線與直線垂直,O為坐標(biāo)原點,直線OP的傾斜角為,直線的傾斜角為.
(I)證明: 點是橢圓與直線的唯一交點;        
(II)證明:構(gòu)成等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)F1、F2分別是雙曲線x2-y2=1的兩個焦點,O為坐標(biāo)原點,圓O是以F1F2為直徑的圓,直線lykx+(b>0)與圓O相切,并與雙曲線相交于A、B兩點.(Ⅰ)根據(jù)條件求出bk滿足的關(guān)系式;(Ⅱ)向量在向量方向的投影是p,當(dāng)(×)p2=1時,求直線l的方程;(Ⅲ)當(dāng)(×)p2=m且滿足2≤m≤4時,求DAOB面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)分別是橢圓的左、右焦點.
(1)若是該橢圓上的一個動點,求·的最大值和最小值;
(2)設(shè)過定點的直線與橢圓交于不同的兩點、,且∠為銳角(其中為坐標(biāo)原點),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題


A.兩條相交直線B.兩條平行直線C.橢圓D.雙曲線

查看答案和解析>>

同步練習(xí)冊答案