【題目】求下列不等式的解集:
(1);
(2);
(3);
(4);
(5);
(6).
【答案】(1)或.(2)(3)(4).(5){或}.(6)R
【解析】
(1)根據(jù)一元二次不等式與一元二次方程的關(guān)系,即可求解;(2)將不等式移項(xiàng)并因式分解,結(jié)合一元二次不等式與一元二次方程的關(guān)系,即可求解;(3)將不等式配方,結(jié)合二次函數(shù)的性質(zhì)即可求解;(4)將不等式配方,結(jié)合二次函數(shù)的性質(zhì)即可求解;(5)根據(jù)一元二次不等式與一元二次方程的關(guān)系,即可求解;(6)將不等式配方,結(jié)合二次函數(shù)的性質(zhì)即可求解.
(1)不等式,所以方程的兩根為,
由二次函數(shù)的圖像與性質(zhì)可知原不等式的解集為或
(2)不等式,即
即不等式等價(jià)于
由二次函數(shù)的圖像與性質(zhì)可知原不等式的解集為.
(3)不等式
所以不等式等價(jià)于
即
由二次函數(shù)的圖像與性質(zhì)可知原不等式的解集為
(4)不等式
因?yàn)?/span>
由二次函數(shù)的圖像與性質(zhì)可知原不等式的解集為
(5)不等式
所以原不等式等價(jià)于
所以由二次函數(shù)的圖像與性質(zhì)可知原不等式的解集為{或}.
(6)不等式
因?yàn)?/span>
所以由二次函數(shù)的圖像與性質(zhì)可知原不等式的解集為R
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】市場份額又稱市場占有率,它在很大程度上反映了企業(yè)的競爭地位和盈利能力,是企業(yè)非常重視的一個(gè)指標(biāo).近年來,服務(wù)機(jī)器人與工業(yè)機(jī)器人以迅猛的增速占領(lǐng)了中國機(jī)器人領(lǐng)域龐大的市場份額,隨著“一帶一路”的積極推動(dòng),包括機(jī)器人產(chǎn)業(yè)在內(nèi)的眾多行業(yè)得到了更廣闊的的發(fā)展空間,某市場研究人員為了了解某機(jī)器人制造企業(yè)的經(jīng)營狀況,對該機(jī)器人制造企業(yè)2017年1月至6月的市場份額進(jìn)行了調(diào)查,得到如下資料:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
市場份額 | 11 | 163 | 16 | 15 | 20 | 21 |
請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出關(guān)于的線性回歸方程,并預(yù)測該企業(yè)2017年7月份的市場份額.
如圖是該機(jī)器人制造企業(yè)記錄的2017年6月1日至6月30日之間的產(chǎn)品銷售頻數(shù)(單位:天)統(tǒng)計(jì)圖.設(shè)銷售產(chǎn)品數(shù)量為,經(jīng)統(tǒng)計(jì),當(dāng)時(shí),企業(yè)每天虧損約為200萬元;
當(dāng)時(shí),企業(yè)平均每天收入約為400萬元;
當(dāng)時(shí),企業(yè)平均每天收入約為700萬元.
①設(shè)該企業(yè)在六月份每天收入為,求的數(shù)學(xué)期望;
②如果將頻率視為概率,求該企業(yè)在未來連續(xù)三天總收入不低于1200萬元的概率.
附:回歸直線的方程是,其中
, ,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓,點(diǎn)P是直線上的一動(dòng)點(diǎn),過點(diǎn)P作圓M的切線PA,PB,切點(diǎn)為A,B.
(1)當(dāng)切線PA的長度為時(shí),求點(diǎn)P的坐標(biāo);
(2)若的外接圓為圓N,試問:當(dāng)P運(yùn)動(dòng)時(shí),圓N是否過定點(diǎn)?若存在,求出所有的定點(diǎn)的坐標(biāo);若不存在,請說明理由;
(3)求線段AB長度的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列滿足,.
(1)求數(shù)列的通項(xiàng)公式;
(2)求數(shù)列的前項(xiàng)和;
(3)設(shè)數(shù)列滿足,其中.記的前項(xiàng)和為.是否存在正整數(shù),使得成立?若存在,請求出所有滿足條件的;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面是邊長為2的正方形,,且,為中點(diǎn).
(Ⅰ)求證:平面;
(Ⅱ)求二面角的大小;
(Ⅲ)在線段上是否存在點(diǎn),使得點(diǎn)到平
面的距離為?若存在,確定點(diǎn)的位置;
若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù).
(1)若函數(shù)在點(diǎn)處的切線與直線平行,求實(shí)數(shù)的值;
(2)若函數(shù)在上單調(diào)遞增,求實(shí)數(shù)的取值范圍;
(3)在(1)的條件下,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)某鎮(zhèn)家庭抽樣調(diào)查的統(tǒng)計(jì),2003年每戶家庭平均消費(fèi)支出總額為1萬元,其中食品消費(fèi)額為0.6萬元.預(yù)測2003年后,每戶家庭平均消費(fèi)支出總額每年增加3000元,如果到2005年該鎮(zhèn)居民生活狀況能達(dá)到小康水平(即恩格爾系數(shù)n滿足),則這個(gè)鎮(zhèn)每戶食品消費(fèi)額平均每年的增長率至多是多少(精確到0.1%)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|x-a|-1,(a為常數(shù)).
(1)若f(x)在x∈[0,2]上的最大值為3,求實(shí)數(shù)a的值;
(2)已知g(x)=xf(x)+a-m,若存在實(shí)數(shù)a∈(-1,2],使得函數(shù)g(x)有三個(gè)零點(diǎn),求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)對任意的實(shí)數(shù)m,n都有,且當(dāng)時(shí),.
(1)求;
(2)求證:在R上為增函數(shù);
(3)若,且關(guān)于x的不等式對任意的恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com