某商場實(shí)行優(yōu)惠措施,若購物金額x在800元以上(含800元)打8折;若購物金額在500元以上(含500元)打9折,否則不打折.請?jiān)O(shè)計(jì)一個(gè)算法程序框圖,要求輸入購物金額x,能輸出實(shí)際交款額,并寫出程序.
考點(diǎn):設(shè)計(jì)程序框圖解決實(shí)際問題
專題:綜合題,算法和程序框圖
分析:先根據(jù)題意可知實(shí)際交款額y與購物金額x的函數(shù)關(guān)系是一個(gè)分段函數(shù),然后利用選擇結(jié)構(gòu)畫出算法框圖即可.
解答: 解:根據(jù)題意,程序框圖如圖所示
   …(6分)
程序:
x=input(“購物金額=”):
if  x>=800
    y=0.8•x
else
    if  x>=500
    y=0.9•x
  else
     y=x
  end
end
print  y…(12分)
點(diǎn)評:本題主要考查了設(shè)計(jì)程序框圖解決實(shí)際問題,同時(shí)考查了選擇結(jié)構(gòu),屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
tan100°-tan40°+tan120°
tan40°tan80°tan120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求下列各式的值
(1)(0.064)- 
1
3
-(-
7
8
0+[(-2)5]- 
2
5
+(
1
16
0.75
(2)
1
2
lg32-
4
3
lg
8
+lg
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
6
3
,左焦點(diǎn)到左準(zhǔn)線的距離為1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)直線l1:y=k(x-1)(k>0)交橢圓C于點(diǎn)A,B,且點(diǎn)A在第一象限內(nèi).直線l1與直線l2:x=6交于點(diǎn)D,直線l3:x=1與橢圓C在第一象限內(nèi)交于點(diǎn)M.
(1)求點(diǎn)A,B的坐標(biāo)(用k表示);
(2)求證:直線MA,MD,MB的斜率成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過雙曲線C:
x2
4
-
y2
9
=1的左焦點(diǎn)作傾斜角為
π
6
的直線l,則直線l與雙曲線C的交點(diǎn)情況是(  )
A、沒有交點(diǎn)
B、只有一個(gè)交點(diǎn)
C、兩個(gè)交點(diǎn)都在左支上
D、兩個(gè)交點(diǎn)分別在左、右支上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
n
m
是兩個(gè)單位向量,其夾角是60°,則向量
a
=2
m
+
n
b
=2
n
-3
m
的夾角是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x2-4x-5|,g(x)=k
(1)畫出函數(shù)f(x)的圖象.
(2)若函數(shù)f(x)與g(x)有3個(gè)交點(diǎn),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下表提供了某廠生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標(biāo)準(zhǔn)煤)的幾組對照數(shù)據(jù).
x3456
y2.5344.5
(Ⅰ)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程y=bx+a;
(Ⅱ)請求出相關(guān)指數(shù)R2,并說明解釋變量對預(yù)報(bào)變量的貢獻(xiàn)率為多少?
(參考數(shù)值:3×2.5+4×3+5×4+6×4.5=66.5)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)幾何體按比列繪制的三視圖如圖所示(單位:m),則該幾何體的體積為
 
m2

查看答案和解析>>

同步練習(xí)冊答案