【題目】某地電影院為了了解當(dāng)?shù)赜懊詫煲嫌车囊徊侩娪暗钠眱r的看法,進行了一次調(diào)研,得到了票價x(單位:元)與渴望觀影人數(shù)y(單位:萬人)的結(jié)果如下表:

x(單位:元)

30

40

50

60

y(單位:萬人)

4.5

4

3

2.5

(1)若yx具有較強的相關(guān)關(guān)系,試分析yx之間是正相關(guān)還是負(fù)相關(guān);

(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;

(3)根據(jù)(2)中求出的線性回歸方程,預(yù)測票價定為多少元時,能獲得最大票房收入.

參考公式:,.

【答案】(1)負(fù)相關(guān);(2);(3)票價定為47.5元時,能獲得最大票房收入

【解析】

試題分析:(1)在坐標(biāo)系內(nèi)把對應(yīng)的點描出即得散點圖,由圖可得之間是負(fù)相關(guān);(2)求出樣本點中心,利用回歸系數(shù)公式求出,得出回歸方程;(3),利用配方法,可得結(jié)論.

試題解析:(1)由表中數(shù)據(jù)易知,的增大而減小,故之間是負(fù)相關(guān).

(2)由表中數(shù)據(jù)可得,,,,則,,所以所求線性回歸方程為.

(3)根據(jù)(2)中的線性回歸方程,若票價為元,則渴望觀影人數(shù)約為萬人,可預(yù)測票房收入為,易得,當(dāng)時,取得最大值,即票價定為元時,能獲得最大票房收入.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={x|2-a≤x≤2+a},B={x|x≤1或x≥4}.

(1)當(dāng)a=3時,求A∩B;

(2)若a>0,且A∩B=,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

1)求函數(shù)的單調(diào)區(qū)間;

2)若存在、滿足.求證 (其中的導(dǎo)函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】 某個集團公司下屬的甲、乙兩個企業(yè)在2014年1月的產(chǎn)值都為a萬元,甲企業(yè)每個月的產(chǎn)值與前一個月相比增加的產(chǎn)值相等,乙企業(yè)每個月的產(chǎn)值與前一個月相比增加的百分?jǐn)?shù)相等,到2015年1月兩個企業(yè)的產(chǎn)值再次相等.

(1)試比較2014年7月甲、乙兩個企業(yè)產(chǎn)值的大小,并說明理由.

(2)甲企業(yè)為了提高產(chǎn)能,決定投入3.2萬元買臺儀器,并且從2015年2月1日起投入使用.從啟用的第一天起連續(xù)使用,第n天的維修保養(yǎng)費為元(n∈N*),求前n天這臺儀器的日平均耗資(含儀器的購置費),并求日平均耗資最小時使用的天數(shù)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在十九大會議上,黨中央明確強調(diào)堅持房子是用來住的……”,得到了各級政府及相關(guān)單位的積極響應(yīng).在濟寧,隨著濟寧一中升學(xué)率的節(jié)節(jié)攀升,北湖校區(qū)附近的房價也在不斷攀升,為滿足廣大人民群眾的購房需求,一中北湖附近的一個樓盤開盤價已限定為每平米不超過7千元,每層每平米的價格(千元)與樓層之間符合一個二次函數(shù)的變化規(guī)律,期中一棟高33層的高層住宅最低銷售價為底層(一樓)每平米6千元,最高價為第20層每平米7千元.

1)根據(jù)以上信息寫出這個二次函數(shù)的表達式及定義域.

2)某單位考慮到職工子女去一中就學(xué)的實際需要,計劃團購住房,盡力爭取團購優(yōu)惠政策,如果得到的優(yōu)惠政策是在每套房總價的基礎(chǔ)上減去20(千元)后,再以余款的九五折將建筑面積為95平米的房型出售給該單位職工,張某和李某分別選定了1樓和25樓,請你根據(jù)函數(shù)性質(zhì),比較張某和李某誰獲得的優(yōu)惠額度更大一些?這一優(yōu)惠的額度為多少(千元)?(注:九五折--按原價的折為現(xiàn)價)(精確到0.001千元).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2018年2月9-25日,第23屆冬奧會在韓國平昌舉行.4年后,第24屆冬奧會將在中國北京和張家口舉行.為了宣傳冬奧會,某大學(xué)在平昌冬奧會開幕后的第二天,從全校學(xué)生中隨機抽取了120名學(xué)生,對是否收看平昌冬奧會開幕式情況進行了問卷調(diào)查,統(tǒng)計數(shù)據(jù)如下:

收看

沒收看

男生

60

20

女生

20

20

(Ⅰ)根據(jù)上表說明,能否有的把握認(rèn)為收看開幕式與性別有關(guān)?

(Ⅱ)現(xiàn)從參與問卷調(diào)查且收看了開幕式的學(xué)生中采用按性別分層抽樣的方法選取8人,參加2022年北京冬奧會志愿者宣傳活動.

(ⅰ)問男、女學(xué)生各選取多少人?

(ⅱ)若從這8人中隨機選取2人到校廣播站開展冬奧會及冰雪項目宣傳介紹,求恰好選到一名男生一名女生的概率P.

附:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,且圓經(jīng)過橢圓C的上、下頂點.

1)求橢圓C的方程;

2)若直線l與橢圓C相切,且與橢圓相交于M,N兩點,證明:的面積為定值(O為坐標(biāo)原點).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠為了對新研發(fā)的一種產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到如下數(shù)據(jù):由表中數(shù)據(jù),求得線性回歸方程為,若從這些樣本中任取一點,則它在回歸直線左下方的概率為______.

單價(元)

4

5

6

7

8

9

銷量(件)

90

84

83

80

75

68

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù).

(1)的兩個不同零點,是否存在實數(shù),使成立?若存在,的值;若不存在,請說明理由.

(2)設(shè),函數(shù),存在個零點.

(i)的取值范圍;

(ii)設(shè)分別是這個零點中的最小值與最大值,的最大值.

查看答案和解析>>

同步練習(xí)冊答案