一個多面體的直觀圖和三視圖如下:(其中分別是中點)

(1)求證:平面;
(2)求多面體的體積.

(1) 取中點,連,由分別是中點,可設:, ∴面 (2)

解析試題分析:(1)由三視圖知,該多面體是底面為直角三角形的直三棱柱,且,
,∴.     ---2分
中點,連,由分別是中點,可設:,
∴面…          ---8分
(2)作,由于三棱柱為直三棱柱
,
,---12
考點:三視圖與線面位置關系柱體體積計算
點評:本題的關鍵是先由三視圖找到直觀圖中對應的邊長及邊的垂直關系

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,直三棱柱(側棱垂直于底面的棱柱),底面中    ,棱分別為的中點.

(1)求 >的值;
(2)求證:
(3)求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(12分)
已知是四邊形所在平面外一點,四邊形的菱形,側面
為正三角形,且平面平面.
(1)若邊的中點,求證:平面.
(2)求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
在如圖的多面體中,⊥平面,,,,,,的中點.

(Ⅰ) 求證:平面
(Ⅱ) 求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分12分)
已知平面//平面,AB、CD是夾在間的兩條線段,A、C在內(nèi),B、D在內(nèi),點E、F分別在AB、CD上,且,求證:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)右圖是一個直三棱柱(以為底面)被一平面所截得到的幾何體,截面為 已知,,,

(Ⅰ)設點的中點,證明:平面
(Ⅱ)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)如圖,在四棱錐中,平面PAD⊥平面 ABCD,AB=AD,∠BAD=60°,E、F分別是AP、AD的中點

求證:(1)直線EF∥平面PCD;
(2)平面BEF⊥平面PAD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(20) (本題滿分14分) 已知正四棱錐P-ABCD中,底面是邊長為2 的正方形,高為.M為線段PC的中點.

(Ⅰ) 求證:PA∥平面MDB;
(Ⅱ) N為AP的中點,求CN與平面MBD所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,四棱錐中,底面為平行四邊形,,,⊥底面.①證明:平面平面; ②若二面角,求與平面所成角的正弦值.

查看答案和解析>>

同步練習冊答案