8.?dāng)S兩枚均勻的大小不同的骰子,記“兩顆骰子的點(diǎn)數(shù)和為8”為事件A,“小骰子出現(xiàn)的點(diǎn)數(shù)小于大骰子出現(xiàn)的點(diǎn)數(shù)”為事件B,則P(A|B),P(B|A)分別為( 。
A.$\frac{2}{15},\frac{2}{5}$B.$\frac{3}{14},\frac{3}{5}$C.$\frac{1}{3},\frac{1}{5}$D.$\frac{4}{5},\frac{4}{15}$

分析 根據(jù)題意,利用古典概型公式分別算出事件A發(fā)生的概率與事件AB發(fā)生的概率,再利用條件概率計(jì)算公式即可算出P(B|A)、P(A|B)的值.

解答 解:根據(jù)題意,記小骰子的點(diǎn)數(shù)為x,大骰子的點(diǎn)數(shù)為y,
事件A包含的基本事件有“x=2,y=6”,“x=y=4”,“x=6,y,2”,“x=3,y=5”,“x=5,y=3”共5個(gè),
事件B包含的基本事件有“x=1時(shí),y=2、3、4、5、6”,“x=2時(shí),y=3,4、5、6”,“x=3時(shí),y=4、5,、6”,“x=4時(shí),y=5、6”,“x=5,y=6”共15個(gè),
而事件AB包含的基本事件有“x=2,y=6”,”,“x=3,y=5”,共2個(gè).
∴P(B|A)=$\frac{2}{5}$,P(A|B)=$\frac{2}{15}$,
故選:A

點(diǎn)評 本題重考查了古典概型公式、條件概率的計(jì)算等知識,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=acosx+bx2+2(a∈R,b∈R),f'(x)為f(x)的導(dǎo)函數(shù),則f(2016)-f(-2016)+f'(2017)+f'(-2017)=( 。
A.4034B.4032C.4D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某公司為確定下一年度投入某種產(chǎn)品的宣傳費(fèi),需要了解年宣傳費(fèi)x(單位:千元)對年銷量y(單位:)和利潤z(單位:千元)的影響,對近8年的宣傳費(fèi)xi(i=1,2,…,8)和年銷售量yi數(shù)據(jù)進(jìn)行了初步處理,得到下面的散點(diǎn)圖及一些統(tǒng)計(jì)量的值.

$\overline{x}$$\overline{y}$$\overline{w}$ $\sum_{i=1}^{n}$(xi-$\overline{x}$)2$\sum_{i=1}^{n}$(wi-$\overline{w}$)2$\sum_{i=1}^{n}$(xi-$\overline{x}$)(yi-$\overline{y}$)$\sum_{i=1}^{n}$(wi-$\overline{w}$)(yi-$\overline{y}$)
46.65636.8289.81.61469108.8
表中wi=$\sqrt{{x}_{i}}$,$\overline{w}$=$\frac{1}{8}$$\sum_{i=1}^{8}$wi
(1)根據(jù)散點(diǎn)圖判斷,$y=a+bx,y=c+d\sqrt{x}$哪一個(gè)更適合作為年銷售量y關(guān)于年宣傳費(fèi)x的回歸方程類型(給出判斷即可,不必說明理由);
(2)根據(jù)(1)的判斷結(jié)果及表中數(shù)據(jù),建立y關(guān)于x的回歸方程;
(3)已知這種產(chǎn)品的年利潤z與x,y的關(guān)系為z=0.2y-x,根據(jù)(2)的結(jié)果回答下列問題;
①當(dāng)年宣傳費(fèi)x=90時(shí),年銷售量及年利潤的預(yù)報(bào)值是多少?
②當(dāng)年宣傳費(fèi)x為何值時(shí),年利潤的預(yù)報(bào)值最大?
附:對于一組數(shù)據(jù)(u1,v1),(u2,v2),…,(un,vn),其回歸線v=α+βu的斜率和截距的最小二乘估計(jì)分別為:
$\widehat{β}$=$\frac{\sum_{i=1}^{n}({μ}_{i}-\overline{μ})({v}_{i}-\overline{v})}{\sum_{i=1}^{n}({μ}_{i}-\overline{μ})^{2}}$,$\widehat{a}$=$\overline{v}$-$\widehat{β}$$\overline{μ}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在極坐標(biāo)系Ox中,Rt△OPQ的頂點(diǎn)O、P、Q按逆時(shí)針方向排列,∠OPQ=$\frac{π}{2}$,∠POQ=$\frac{π}{3}$,點(diǎn)P在曲線C1:ρ=2cosθ上運(yùn)動(異于極點(diǎn)O).
(1)當(dāng)點(diǎn)P的極坐標(biāo)為$({\sqrt{2},\frac{π}{4}})$,求點(diǎn)Q的極坐標(biāo);
(2)判斷點(diǎn)Q的軌跡C2是何種曲線,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在伸縮變換φ:$\left\{\begin{array}{l}{x′=2x}\\{y′=\frac{1}{2}y}\end{array}\right.$作用下,點(diǎn)P(1,-2)變換為P′的坐標(biāo)為(2,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知正四面體的棱長為4,則此四面體的外接球的表面積是(  )
A.24πB.18πC.12πD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.銳角△ABC中,D為BC的中點(diǎn),滿足∠BAD+∠C=90°,則角B,C的大小關(guān)系為B=C.(填“B<C”或“B=C”或B>C)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.如圖,在△ABC中,cos∠ABC=$\frac{1}{3}$,AB=2,點(diǎn)D在線段AC上,且AD=2DC,BD=$\frac{{4\sqrt{3}}}{3}$,則△ABC的面積為2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知某產(chǎn)品的廣告費(fèi)用x(單位:萬元)與銷售額y(單位:萬元)具有線性關(guān)系關(guān)系,其統(tǒng)計(jì)數(shù)據(jù)如下表:
x3456
y25304045
由上表可得線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$,據(jù)此模型預(yù)報(bào)廣告費(fèi)用為8萬元時(shí)的銷售額是( 。
附:$\widehat$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)•({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{x_i^2}-n{{(\overline x)}^2}}}$;$\widehat{a}$=$\widehat{y}$-$\widehat$x.
A.59.5B.52.5C.56D.63.5

查看答案和解析>>

同步練習(xí)冊答案