【題目】已知直線

1)若直線不經(jīng)過第四象限,求的取值范圍;

2)若直線軸負(fù)半軸于點(diǎn),交軸正半軸于點(diǎn),為坐標(biāo)原點(diǎn),設(shè)的面積為,求的最小值及此時直線的方程.

【答案】(1)k≥0;(2)面積最小值為4,此時直線方程為:x﹣2y+4=0

【解析】

(1)可求得直線l的方程及直線l在y軸上的截距,依題意,從而可解得k的取值范圍;

(2)依題意可求得A(﹣,0),B(0,1+2k),S=(4k++4),利用基本不等式即可求得答案.

(1)直線l的方程可化為:y=kx+2k+1,則直線l在y軸上的截距為2k+1,

要使直線l不經(jīng)過第四象限,則,解得k的取值范圍是:k≥0

(2)依題意,直線l在x軸上的截距為:﹣,在y軸上的截距為1+2k,

∴A(﹣,0),B(0,1+2k),又﹣0且1+2k>0,

∴k>0,故S=|OA||OB|=×(1+2k)=(4k++4)≥(4+4)=4,當(dāng)且僅當(dāng)4k=,即k=時取等號,

故S的最小值為4,此時直線l的方程為x﹣2y+4=0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知雙曲線C1 ,曲線C2:|y|=|x|+1,P是平面內(nèi)一點(diǎn),若存在過點(diǎn)P的直線與C1 , C2都有公共點(diǎn),則稱P為“C1﹣C2型點(diǎn)”

(1)在正確證明C1的左焦點(diǎn)是“C1﹣C2型點(diǎn)“時,要使用一條過該焦點(diǎn)的直線,試寫出一條這樣的直線的方程(不要求驗(yàn)證);
(2)設(shè)直線y=kx與C2有公共點(diǎn),求證|k|>1,進(jìn)而證明原點(diǎn)不是“C1﹣C2型點(diǎn)”;
(3)求證:圓x2+y2= 內(nèi)的點(diǎn)都不是“C1﹣C2型點(diǎn)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnxax(a∈R).求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)△ABC的內(nèi)角A,B,C所對邊分別為a,b,c,且a+c=6,b=2,
(1)求a,c的值;
(2)求sin(A﹣B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 且S4=4S2 , a2n=2an+1.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}的前n項(xiàng)和為Tn (λ為常數(shù)).令cn=b2n(n∈N*)求數(shù)列{cn}的前n項(xiàng)和Rn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】養(yǎng)路處建造圓錐形無底倉庫用于貯藏食鹽(供融化高速公路上的積雪之用),已建的倉庫的底面直徑為12m,高4m,養(yǎng)路處擬建一個更大的圓錐形倉庫,以存放更多食鹽,現(xiàn)有兩種方案:一是新建的倉庫的底面直徑比原來大4m(高不變);二是高度增加4m(底面直徑不變).

(1)分別計算按這兩種方案所建的倉庫的體積;

(2)分別計算按這兩種方案所建的倉庫的表面積;

(3)哪個方案更經(jīng)濟(jì)些?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點(diǎn),分別為橢圓的左右頂點(diǎn),點(diǎn)上,且面積的最大值為.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)的左焦點(diǎn),點(diǎn)在直線上,過的垂線交橢圓,兩點(diǎn).證明:直線平分線段.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)向量 ,
(1)若 ,求x的值;
(2)設(shè)函數(shù) ,求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙、丙、丁四位同學(xué)高考之后計劃去三個不同社區(qū)進(jìn)行幫扶活動,每人只能去一個社區(qū),每個社區(qū)至少一人.其中甲必須去社區(qū),乙不去社區(qū),則不同的安排方法種數(shù)為 ( )

A. 24 B. 8 C. 7 D. 6

查看答案和解析>>

同步練習(xí)冊答案