已知A、B為拋物線C:y2 = 4x上的兩個(gè)動點(diǎn),點(diǎn)A在第一象限,點(diǎn)B在第四象限l1、l2分別過點(diǎn)A、B且與拋物線C相切,P為l1、l2的交點(diǎn).
(1)若直線AB過拋物線C的焦點(diǎn)F,求證:動點(diǎn)P在一條定直線上,并求此直線方程;
(2)設(shè)C、D為直線l1、l2與直線x = 4的交點(diǎn),求面積的最小值.
(1);(2)
解析試題分析:(1)設(shè), (),方程為,與拋物線方程聯(lián)立,利用直線與拋物線y2 = 4x相切,故,求,故切線的方程。同理可求得切線方程為,聯(lián)立得交點(diǎn),再注意到已知條件直線AB過拋物線C的焦點(diǎn)F,故表示直線AB的方程為,將拋物線焦點(diǎn)代入,得,從而發(fā)現(xiàn)點(diǎn)P橫坐標(biāo)為,故點(diǎn)P在定直線上;(2)列面積關(guān)于某個(gè)變量的函數(shù)關(guān)系式,再求函數(shù)最小值即可,由已知得,,,故,又高為,故三角形的面積為,再求最小值即可.
(1)設(shè), ().
易知斜率存在,設(shè)為,則方程為.
由得, ①
由直線與拋物線相切,知.
于是,,方程為.
同理,方程為.
聯(lián)立、方程可得點(diǎn)坐標(biāo)為 ,
∵ ,方程為,
過拋物線的焦點(diǎn).
∴,∴,點(diǎn)P在定直線上.
(2)由(1)知,的坐標(biāo)分別為,
∴.
∴ .
設(shè)(),,
由知,,當(dāng)且僅當(dāng)時(shí)等號成立.
∴
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
圓的切線與x軸正半軸,y軸正半軸圍成一個(gè)三角形,當(dāng)該三角形面積最小時(shí),切點(diǎn)為P(如圖),雙曲線過點(diǎn)P且離心率為.
(1)求的方程;
(2)橢圓過點(diǎn)P且與有相同的焦點(diǎn),直線過的右焦點(diǎn)且與交于A,B兩點(diǎn),若以線段AB為直徑的圓心過點(diǎn)P,求的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)(2011•廣東)在平面直角坐標(biāo)系xOy中,直線l:x=﹣2交x軸于點(diǎn)A,設(shè)P是l上一點(diǎn),M是線段OP的垂直平分線上一點(diǎn),且滿足∠MPO=∠AOP.
(1)當(dāng)點(diǎn)P在l上運(yùn)動時(shí),求點(diǎn)M的軌跡E的方程;
(2)已知T(1,﹣1),設(shè)H是E上動點(diǎn),求|HO|+|HT|的最小值,并給出此時(shí)點(diǎn)H的坐標(biāo);
(3)過點(diǎn)T(1,﹣1)且不平行與y軸的直線l1與軌跡E有且只有兩個(gè)不同的交點(diǎn),求直線l1的斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,原點(diǎn)為,拋物線的方程為,線段是拋物線的一條動弦.
(1)求拋物線的準(zhǔn)線方程和焦點(diǎn)坐標(biāo);
(2)若,求證:直線恒過定點(diǎn);
(3)當(dāng)時(shí),設(shè)圓,若存在且僅存在兩條動弦,滿足直線與圓相切,求半徑的取值范圍?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知拋物線的方程為,直線的方程為,點(diǎn)關(guān)于直線的對稱點(diǎn)在拋物線上.
(1)求拋物線的方程;
(2)已知,求過點(diǎn)及拋物線與軸兩個(gè)交點(diǎn)的圓的方程;
(3)已知,點(diǎn)是拋物線的焦點(diǎn),是拋物線上的動點(diǎn),求的最小值及此時(shí)點(diǎn)的坐標(biāo);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓,、是橢圓的左右焦點(diǎn),且橢圓經(jīng)過點(diǎn).
(1)求該橢圓方程;
(2)過點(diǎn)且傾斜角等于的直線,交橢圓于、兩點(diǎn),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(2011•山東)在平面直角坐標(biāo)系xOy中,已知橢圓.如圖所示,斜率為k(k>0)且不過原點(diǎn)的直線l交橢圓C于A,B兩點(diǎn),線段AB的中點(diǎn)為E,射線OE交橢圓C于點(diǎn)G,交直線x=﹣3于點(diǎn)D(﹣3,m).
(1)求m2+k2的最小值;
(2)若|OG|2=|OD|?|OE|,
(i)求證:直線l過定點(diǎn);
(ii)試問點(diǎn)B,G能否關(guān)于x軸對稱?若能,求出此時(shí)△ABG的外接圓方程;若不能,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(0,-1),B點(diǎn)在直線y = -3上,M點(diǎn)滿足, ,M點(diǎn)的軌跡為曲線C。
(1)求C的方程;
(2)P為C上的動點(diǎn),l為C在P點(diǎn)處得切線,求O點(diǎn)到l距離的最小值。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com