已知f(x)=
f(x+2),x≤0
log
1
2
x,x>0
,則f(-8)等于( 。
A、-1B、0C、1D、2
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)分段函數(shù)的表達(dá)式,直接代入即可得到結(jié)論.
解答: 解:由分段函數(shù)的表達(dá)式可得,f(-8)=f(-6)=f(-4)=f(-2)=f(0)=f(2)=log
1
2
2=-1
,
故選:A.
點(diǎn)評(píng):本題主要考查函數(shù)值的計(jì)算,利用函數(shù)的周期性特點(diǎn)進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知α是第三象限角,且sin(π-α)=-
3
5
,則tanα的值為( 。
A、-
4
3
B、
4
3
C、-
3
4
D、
3
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于實(shí)數(shù)a和b,定義運(yùn)算a*b,運(yùn)算原理如圖所示,則式子(
1
4
)-
1
2
*lne3的值為(  )
A、6B、7C、8D、9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由直線y=x+2上的點(diǎn)向圓(x-2)2+(y+2)2=1引切線,則切線長的最小值為(  )
A、
17
B、4
C、3
2
D、
19

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
x+1,x≤1
-x+3,x>1
,則f(2)=(  )
A、3B、2C、1D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在函數(shù)y=sin|x|、y=|sinx|、y=tan(2x+
3
)、y=cos(-2x+
3
)中,最小正周期為π的函數(shù)的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>0,函數(shù)f(x)=
a
3
x3-ax2+x+1.
(Ⅰ)若f(x)在x=x1,x=x2處取得極值,且1<
x2
x1
≤5,求實(shí)數(shù)a的取值范圍;
(Ⅱ)當(dāng)x≥2時(shí),求3f(x)+|f′(a)-1|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-ax2-bx-a2,x∈R,a,b為常數(shù).
(1)若函數(shù)f(x)在x=1處有極大值-14,求實(shí)數(shù)a,b的值;
(2)若a=0,方程f(x)=2恰有3個(gè)不相等的實(shí)數(shù)解,求實(shí)數(shù)b的取值范圍;
(3)若b=0,函數(shù)f(x)在(-∞,-1)上有最大值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面上兩點(diǎn)M(-1,0),N(1,0),若曲線上存在點(diǎn)P使得|PM|+|PN|=4,則稱該曲線為“1?
1
2
曲線”,下列曲線中是“1?
1
2
曲線”的是
 
(將正確答案的序號(hào)寫到橫線上)
①x2+y2=4
x2
3
+
y2
4
=1
x2
25
-
y2
16
=1
④y2=8x.

查看答案和解析>>

同步練習(xí)冊(cè)答案