在等差數(shù)列{an}與等比數(shù)列{bn}中,a1=b1>0,an=bn>0,則am與bm(1<m<n)的大小關(guān)系是   
【答案】分析:要比較am與bm的大小關(guān)系,我們要分兩種情況進(jìn)行討論,①若d=0或q=1時(shí),這時(shí)數(shù)列為常數(shù)列②若若d≠0,則由數(shù)列的函數(shù)特征,等差數(shù)列對應(yīng)的函數(shù)為一次函數(shù),其圖象是一條直線,等比數(shù)列對應(yīng)的函數(shù)為指數(shù)函數(shù),其圖象是一個(gè)凹狀遞增的曲線,畫出對應(yīng)的圖象,不難得到結(jié)論.
解答:解:若d=0或q=1,則am=bm
若d≠0,畫出an=a1+(n-1)d與bn=b1•qn-1的圖象,
易知am>bm,
綜上所述:am≥bm
故選Am≥bm
點(diǎn)評:數(shù)列是一種定義域?yàn)檎麛?shù)的特殊函數(shù),我們可以利用研究函數(shù)的方式研究它,特別是等差數(shù)列對應(yīng)的一次函數(shù),等比數(shù)列對應(yīng)的指數(shù)型函數(shù),我們要善于通過數(shù)列的通項(xiàng)公式、前n項(xiàng)和公式,或數(shù)列相關(guān)的一些性質(zhì),分析出對應(yīng)函數(shù)的性質(zhì),必要時(shí)可能借助函數(shù)的圖象,進(jìn)行分析.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

5、在等差數(shù)列{an}與等比數(shù)列{bn}中,a1=b1>0,an=bn>0,則am與bm(1<m<n)的大小關(guān)系是
am≥bm

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}與等比數(shù)列{bn}中,a1=b1>0,a2n+1=b2n+1>0(n=1,2,3,…),則an+1與bn+1的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:新課標(biāo)高三數(shù)學(xué)含絕對值的不等式、不等式的證明專項(xiàng)訓(xùn)練(河北) 題型:填空題

在等差數(shù)列{an}與等比數(shù)列{bn}中,a1=b1>0,an=bn>0,則am與bm(1<m<n)的大小關(guān)系是__________

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在等差數(shù)列{an}與等比數(shù)列{bn}中,a1=b1>0,a2n+1=b2n+1>0(n=1,2,3,…),則an+1與bn+1的大小關(guān)系是______.

查看答案和解析>>

同步練習(xí)冊答案