【題目】兩地相距千米,汽車從地勻速行駛到地,速度不超過千米小時,已知汽車每小時的運輸成本(單位:元)由可變部分和固定部分兩部分組成:可變部分與速度的平方成正比,比例系數(shù)為,固定部分為元,

(1)把全程運輸成本()表示為速度(千米小時)的函效:并求出當時,汽車應以多大速度行駛,才能使得全程運輸成本最;

(2)隨著汽車的折舊,運輸成本會發(fā)生一些變化,那么當,此時汽車的速度應調(diào)整為多大,才會使得運輸成本最小,

【答案】1,當汽車以的速度行駛,能使得全稱運輸成本最;

2.

【解析】

1)計算出汽車的行駛時間為小時,可得出全程運輸成本為,其中,代入,,利用基本不等式求解;

2)注意到時,利用基本不等式取不到等號,轉(zhuǎn)而利用雙勾函數(shù)的單調(diào)性求解。

1)由題意可知,汽車從地到地所用時間為小時,

全程成本為.

,時,,

當且僅當時取等號,

所以,汽車應以的速度行駛,能使得全程行駛成本最;

2)當時,

由雙勾函數(shù)的單調(diào)性可知,當時,有最小值,

所以,汽車應以的速度行駛,才能使得全程運輸成本最小。

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】微信是騰訊公司推出的一種手機通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時間,某經(jīng)銷化妝品的微商在一廣場隨機采訪男性、女性用戶各名,將男性、女性使用微信的時間分成組:,,,,分別加以統(tǒng)計,得到如圖所示的頻率分布直方圖.

(1)根據(jù)女性頻率分布直方圖,估計女性使用微信的平均時間;

(2)若每天玩微信超過小時的用戶列為微信控,否則稱其為非微信控,請你根據(jù)已知條件完成的列聯(lián)表,并判斷是否有的把握認為微信控性別有關(guān)?

參考公式:,其中

參考數(shù)據(jù):

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面,底面為矩形,的中點,且,.

(1)求證:平面

(2)若點為線段上一點,且,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)O為坐標原點,動點M在橢圓C: +y2=1上,過M做x軸的垂線,垂足為N,點P滿足 =
(Ⅰ)求點P的軌跡方程;
(Ⅱ)設(shè)點Q在直線x=﹣3上,且 =1.證明:過點P且垂直于OQ的直線l過C的左焦點F.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: + =1(a>b>0),四點P1(1,1),P2(0,1),P3(﹣1, ),P4(1, )中恰有三點在橢圓C上.(12分)
(1)求C的方程;
(2)設(shè)直線l不經(jīng)過P2點且與C相交于A,B兩點.若直線P2A與直線P2B的斜率的和為﹣1,證明:l過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= ,設(shè)a∈R,若關(guān)于x的不等式f(x)≥| +a|在R上恒成立,則a的取值范圍是( 。
A.[﹣ ,2]
B.[﹣ , ]
C.[﹣2 ,2]
D.[﹣2 , ]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某氣象儀器研究所按以下方案測試一種“彈射型”氣象觀測儀器的垂直彈射高度:A、B、C三地位于同一水平面上,在C處進行該儀器的垂直彈射,觀測點A、B兩地相距100米,∠BAC=60°,在A地聽到彈射聲音的時間比在B地晚秒. A地測得該儀器彈至最高點H時的仰角為30°.

(1)求A、C兩地的距離;

(2)求該儀器的垂直彈射高度CH.(聲音的傳播速度為340米/秒)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知曲線C1:y=cosx,C2:y=sin(2x+ ),則下面結(jié)論正確的是( 。
A.把C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向右平移 個單位長度,得到曲線C2
B.把C1上各點的橫坐標伸長到原來的2倍,縱坐標不變,再把得到的曲線向左平移 個單位長度,得到曲線C2
C.把C1上各點的橫坐標縮短到原來的 倍,縱坐標不變,再把得到的曲線向右平移 個單位長度,得到曲線C2
D.把C1上各點的橫坐標縮短到原來的 倍,縱坐標不變,再把得到的曲線向右平移 個單位長度,得到曲線C2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx),gx)滿足關(guān)系gx)=fxfx),其中α是常數(shù).

(1)設(shè)fx)=cosx+sinx,,求gx)的解析式;

(2)設(shè)計一個函數(shù)fx)及一個α的值,使得;

(3)當fx)=|sinx|+cosx時,存在x1x2R,對任意xRgx1)≤gx)≤gx2)恒成立,求|x1-x2|的最小值.

查看答案和解析>>

同步練習冊答案