已知關(guān)于x的方程sinx+cosx=a與tanx+cotx=a的解集都是空集,則實(shí)數(shù)a的取值范圍是
(-2,-
2
)∪(
2
,2)
(-2,-
2
)∪(
2
,2)
分析:利用兩角和的正弦函數(shù)化簡(jiǎn)方程sinx+cosx=a為:
2
sin( x+
π
4
)=a,由解集是空集求出實(shí)數(shù)a的取值范圍.再由
tanx+cotx=a的解集是空集求出實(shí)數(shù)a的取值范圍,將實(shí)數(shù)a的這兩個(gè)取值范圍取交集,即得所求.
解答:解:方程sinx+cosx=a 化簡(jiǎn)為:
2
sin( x+
π
4
)=a,即 sin( x+
π
4
)=
2
a
2

若沒(méi)有解集,那么
2
a
2
>1或
2
a
2
<-1,
解得 a>
2
或a<-
2
,即實(shí)數(shù)a的取值范圍是 (
2
,+∞)∪(-∞,-
2
).
∵tanx+cotx≥2,或tanx+cotx≤-2,若tanx+cotx=a的解集是空集,
則有-2<a<2,即實(shí)數(shù)a的取值范圍是 (-2,2 ).
對(duì)這兩個(gè)實(shí)數(shù)a的取值范圍取交集可得(-2,-
2
)∪(
2
,2)
,
故答案為 (-2,-
2
)∪(
2
,2)
點(diǎn)評(píng):本題考查求三角函數(shù)的最值,基本不等式的應(yīng)用,空集的概念,考查計(jì)算能力,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程sinx+cosx=a的解集是空集,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程sinx+cos2x+a=0有實(shí)數(shù)解,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程sinx+cosx=a有解,則實(shí)數(shù)a的取值范圍是
[-
2
2
]
[-
2
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程sinx+cosx=a
(1)若方程有實(shí)數(shù)解,求實(shí)數(shù)a的取值范圍
(2)若方程x∈[0,π]時(shí)有兩個(gè)相異的實(shí)數(shù)解,求實(shí)數(shù)a的范圍及兩實(shí)數(shù)解的和.

查看答案和解析>>

同步練習(xí)冊(cè)答案