【題目】已知函數(shù)f(x)= .
(1)用定義證明函數(shù)f(x)在(﹣∞,+∞)上為減函數(shù);
(2)若x∈[1,2],求函數(shù)f(x)的值域;
(3)若g(x)= ,且當(dāng)x∈[1,2]時(shí)g(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.
【答案】
(1)證明:設(shè)x1<x2,
則f(x1)﹣f(x2)= ﹣
∵x1<x2,∴2x2﹣2x1>0
又2x1+1>0,2x2+1>0,
f(x1)﹣f(x2)>0即f(x1)>f(x2)
∴f(x)在(﹣∞,+∞)上為減函數(shù)
(2)解:∵f(x)在(﹣∞,+∞)上為減函數(shù),
∴f(x)值域?yàn)?
(3)解:當(dāng)x∈[{1,2}]時(shí),g(x)∈
∵g(x)≥0在x∈[1,2]上恒成立,
∴ ,∴
【解析】(1)根據(jù)函數(shù)單調(diào)性的定義,先在所給區(qū)間上任設(shè)兩個(gè)數(shù)并確定好大小,然后通過作差法即可獲得自變量對應(yīng)函數(shù)值的大小關(guān)系,由定義即可獲得問題的解答;(2)結(jié)合(1)所證明的結(jié)論即可獲得函數(shù)在[1,2]上的單調(diào)性,從而可以求的函數(shù)在[1,2]上的最值,進(jìn)而問題即可獲得解答;(3)充分利用前兩問答結(jié)論,即可獲得g(x)= 在[1,2]上的最值,結(jié)合恒成立的條件即可將問題轉(zhuǎn)化為實(shí)數(shù)a的不等關(guān)系,求解即可獲得問題的解答.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的值域(求函數(shù)值域的方法和求函數(shù)最值的常用方法基本上是相同的.事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最。ù螅⿺(shù),這個(gè)數(shù)就是函數(shù)的最。ù螅┲担虼饲蠛瘮(shù)的最值與值域,其實(shí)質(zhì)是相同的),還要掌握函數(shù)單調(diào)性的判斷方法(單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大;③作差比較或作商比較)的相關(guān)知識才是答題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x+ (x≠0).
(1)判斷并證明函數(shù)在其定義域上的奇偶性;
(2)判斷并證明函數(shù)在(2,+∞)上的單調(diào)性;
(3)解不等式f(2x2+5x+8)+f(x﹣3﹣x2)<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,五面體中,四邊形是菱形, 是邊長為2的正三角形, , .
(1)證明: ;
(2)若點(diǎn)在平面內(nèi)的射影,求與平面所成的角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心在直線: 上,與直線: 相切,且截直線: 所得弦長為6
(Ⅰ)求圓的方程
(Ⅱ)過點(diǎn)是否存在直線,使以被圓截得弦為直徑的圓經(jīng)過原點(diǎn)?若存在,寫出直線的方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是直三棱柱,底面是等腰直角三角形,且,直三棱柱的高等于4,線段的中點(diǎn)為,線段的中點(diǎn)為,線段的中點(diǎn)為.
(1)求異面直線、所成角的大;
(2)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)求函數(shù)的對稱軸方程;
(II)將函數(shù)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)伸長為原來的2倍,然后再向左平移個(gè)單位,得到函數(shù)的圖象.若分別是△ABC三個(gè)內(nèi)角A,B,C的對邊,a=2,c=4,且,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(I)求函數(shù)的對稱軸方程;
(II)將函數(shù)的圖象上各點(diǎn)的縱坐標(biāo)保持不變,橫坐標(biāo)伸長為原來的2倍,然后再向左平移個(gè)單位,得到函數(shù)的圖象.若分別是△ABC三個(gè)內(nèi)角A,B,C的對邊,a=2,c=4,且,求b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】分層抽樣是將總體分成互不交叉的層,然后按照一定的比例,從各層獨(dú)立地抽取一定數(shù)量的個(gè)體,組成一個(gè)樣本的抽樣方法;在《九章算術(shù)》第三章“衰分”中有如下問題:“今有甲持錢五百六十,乙持錢三百五十,丙持錢一百八十,凡三人俱出關(guān),關(guān)稅百錢.欲以錢多少衰出之,問各幾何?”其譯文為:今有甲持560錢,乙持350錢,丙持180錢,甲、乙、丙三人一起出關(guān),關(guān)稅共100錢,要按照各人帶錢多少的比例進(jìn)行交稅,問三人各應(yīng)付多少稅?則下列說法錯(cuò)誤的是( )
A. 甲應(yīng)付錢 B. 乙應(yīng)付錢
C. 丙應(yīng)付錢 D. 三者中甲付的錢最多,丙付的錢最少
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某農(nóng)科所發(fā)現(xiàn),一種作物的年收獲量 (單位: )與它“相近”作物的株數(shù) 具有線性相關(guān)關(guān)系(所謂兩株作物“相近”是指它們的直線距離不超過 ),并分別記錄了相近作物的株數(shù)為 時(shí),該作物的年收獲量的相關(guān)數(shù)據(jù)如下:
(1)求該作物的年收獲量 關(guān)于它“相近”作物的株數(shù)的線性回歸方程;
(2)農(nóng)科所在如圖所示的正方形地塊的每個(gè)格點(diǎn)(指縱、橫直線的交叉點(diǎn))處都種了一株該作物,其中每
個(gè)小正方形的面積為 ,若在所種作物中隨機(jī)選取一株,求它的年收獲量的分布列與數(shù)學(xué)期望.(注:年收
獲量以線性回歸方程計(jì)算所得數(shù)據(jù)為依據(jù))
附:對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估
計(jì)分別為, ,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com