【題目】將函數(shù)f(x)=2sin(2x+ )的圖象向右平移φ(φ>0)個單位,再將圖象上每一點橫坐標縮短到原來的 倍,所得圖象關(guān)于直線x= 對稱,則φ的最小正值為

【答案】
【解析】解:將函數(shù)f(x)=2sin(2x+ )的圖象向右平移φ個單位所得圖象的解析式f(x)=2sin[2(x﹣φ)+ ]=2sin(2x﹣2φ+ ),再將圖象上每一點的橫坐標縮短到原來的 倍所得圖象的解析式f(x)=2sin(4x﹣2φ+ ) 因為所得圖象關(guān)于直線x= 對稱,所以當x= 時函數(shù)取得最值,所以4× ﹣2φ+ =kπ+ ,k∈Z
整理得出φ=﹣ + ,k∈Z
當k=0時,φ取得最小正值為
所以答案是:
【考點精析】根據(jù)題目的已知條件,利用函數(shù)y=Asin(ωx+φ)的圖象變換的相關(guān)知識可以得到問題的答案,需要掌握圖象上所有點向左(右)平移個單位長度,得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的橫坐標伸長(縮短)到原來的倍(縱坐標不變),得到函數(shù)的圖象;再將函數(shù)的圖象上所有點的縱坐標伸長(縮短)到原來的倍(橫坐標不變),得到函數(shù)的圖象.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}的前n項和Sn滿足:Sn= (an﹣1)(a為常數(shù),且a≠0,a≠1);
(1)求{an}的通項公式;
(2)設bn= +1,若數(shù)列{bn}為等比數(shù)列,求a的值;
(3)若數(shù)列{bn}是(2)中的等比數(shù)列,數(shù)列cn=(n﹣1)bn , 求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞增的是(
A.
B.y=ex
C.y=lg|x|
D.y=﹣x2+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c且b=c,∠A的平分線為AD,若 =m
(1)當m=2時,求cosA
(2)當 ∈(1, )時,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有三個不同的零點, , (其中),則的值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知各項為正的數(shù)列{an}是等比數(shù)列,a1=2,a5=32,數(shù)列{bn}滿足:對于任意n∈N* , 有a1b1+a2b2+…+anbn=(n﹣1)2n+1+2.
(1)求數(shù)列{an}的通項公式;
(2)令f(n)=a2+a4+…+a2n , 求 的值;
(3)求數(shù)列{bn}通項公式,若在數(shù)列{an}的任意相鄰兩項ak與ak+1之間插入bk(k∈N*)后,得到一個新的數(shù)列{cn},求數(shù)列{cn}的前100項之和T100

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于兩個定義域相同的函數(shù)f(x),g(x),若存在實數(shù)m、n使h(x)=mf(x)+ng(x),則稱函數(shù)h(x)是由“基函數(shù)f(x),g(x)”生成的.
(1)若f(x)=x2+3x和個g(x)=3x+4生成一個偶函數(shù)h(x),求h(2)的值;
(2)若h(x)=2x2+3x﹣1由函數(shù)f(x)=x2+ax,g(x)=x+b(a、b∈R且ab≠0)生成,求a+2b的取值范圍;
(3)利用“基函數(shù)f(x)=log4(4x+1),g(x)=x﹣1”生成一個函數(shù)h(x),使之滿足下列件:①是偶函數(shù);②有最小值1;求函數(shù)h(x)的解析式并進一步研究該函數(shù)的單調(diào)性(無需證明).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,設A是單位圓和x軸正半軸的交點,P,Q是單位圓上兩點,O是坐標原點,且 ,∠AOQ=α,α∈[0,π). (Ⅰ)若點Q的坐標是 ,求 的值;
(Ⅱ)設函數(shù) ,求f(α)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=1﹣ 在R上是奇函數(shù).
(1)求a;
(2)對x∈(0,1],不等式sf(x)≥2x﹣1恒成立,求實數(shù)s的取值范圍;
(3)令g(x)= ,若關(guān)于x的方程g(2x)﹣mg(x+1)=0有唯一實數(shù)解,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案