已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與直角坐標(biāo)系的x軸的正半軸重合.設(shè)點O為坐標(biāo)原點,直線l:
x=
2
2
t+4
y=
2
2
t
(參數(shù)t∈R)與曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ.
(1)求直線l與曲線C的普通方程;
(2)設(shè)直線L與曲線C相交于A,B兩點,求證:
OA
OB
=0
分析:( I)由直線l:
x=
2
2
t+4
y=
2
2
t
(參數(shù)t∈R),知x=y+4,由此得到直線l的普通方程;由曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ,得到ρ2sin2θ=4ρcosθ.由此得到曲線C的普通方程.
( II)設(shè)A(x1,y1),B(x2,y2),由
y2=4x
y=x-4
消去y得x2-12x+16=0,再由韋達定理進行求解.
解答:解:( I)∵直線l:
x=
2
2
t+4
y=
2
2
t
(參數(shù)t∈R),
∴x=y+4,∴直線l:y=x-4,
∵曲線C的極坐標(biāo)方程為ρsin2θ=4cosθ.
∴曲線C的極坐標(biāo)方程為ρ2sin2θ=4ρcosθ.
曲線C:y2=4x,(5分)
( II)設(shè)A(x1,y1),B(x2,y2),由
y2=4x
y=x-4
消去y得x2-12x+16=0,∴x1+x2=12,x1x2=16,(7分)
∴y1y2=(x1-4)(x2-4)=x1x2-4(x1+x2)+16
OA
OB
=x1x2+y1y2=2x1x2-4(x1+x2)+16=0.。10分)
點評:本題考查直線方程和曲線方程的求法和數(shù)量積等于0的證明,解題時要熟練掌握參數(shù)方程和普通方程的互化,同時要注意韋達定理的合理運用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與直角坐標(biāo)系的x軸的正半軸重合.設(shè)點O為坐標(biāo)原點,直線l:
x=t
y=2+2t
(參數(shù)t∈R)與曲線C的極坐標(biāo)方程為 ρcos2θ=2sinθ
(Ⅰ)求直線l與曲線C的普通方程;
(Ⅱ)設(shè)直線l與曲線C相交于A,B兩點,證明:
OA
OB
=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

本題有(1)、(2)、(3)三個選答題,每小題7分,請考生任選2題作答,滿分14分,如果多做,則按所做的前兩題計分.
(1)選修4-2:矩陣與變換
已知矩陣A=
12
34

①求矩陣A的逆矩陣B;
②若直線l經(jīng)過矩陣B變換后的方程為y=x,求直線l的方程.
(2)選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與直角坐標(biāo)系中x軸的正半軸重合.圓C的參數(shù)方程為
x=1+2cosα
y=-1+2sinα
(a為參數(shù)),點Q極坐標(biāo)為(2,
7
4
π).
(Ⅰ)化圓C的參數(shù)方程為極坐標(biāo)方程;
(Ⅱ)若點P是圓C上的任意一點,求P、Q兩點距離的最小值.
(3)選修4-5:不等式選講
(I)關(guān)于x的不等式|x-3|+|x-4|<a的解不是空集,求a的取值范圍.
(II)設(shè)x,y,z∈R,且
x2
16
+
y2
5
+
z2
4
=1
,求x+y+z的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•許昌二模)已知極坐標(biāo)系的極點與直角坐標(biāo)系的原點重合,極軸與直角坐標(biāo)系中x軸的正半軸重合,且兩坐標(biāo)系有相同的長度單位,圓C的參數(shù)方程為
x=1+2cosα
y=-1+2sinα
(α為參數(shù)),點Q的極坐標(biāo)為(2
2
,
7
4
π).
(Ⅰ)化圓C的參數(shù)方程為極坐標(biāo)方程;
(Ⅱ)若直線l過點Q且與圓C交于M,N兩點,求當(dāng)|MN|最小時,直線l的直角坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•大連二模)選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點與直角坐標(biāo)系xOy的坐標(biāo)原點O重合,極軸與x軸的非負(fù)半軸重合.曲線C1的參數(shù)方程為
x=-2+
10
cosθ
y=
10
sinθ
為參數(shù)),曲線C2的極坐標(biāo)方程為ρ=2cosθ+6sinθ.問曲線C1,C2是否相交,若相交請求出公共弦所在直線的方程,若不相交,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案