下面給出四個命題:
①若a≥b>-1,則
a
1+a
b
1+b

②a<-1是一元二次方程ax2+2x+1=0有一個正根和一個負根的充分不必要條件;
③在數(shù)列{an}中,a1<a2<a3是數(shù)列{an}為遞增數(shù)列的必要不充分條件;
④方程(x+y-2)
x2+y2-9
=0
表示的曲線是一個圓和一條直線.
其中為真命題的是( 。
A、①②③B、①③④
C、②④D、①②③④
考點:命題的真假判斷與應(yīng)用
專題:簡易邏輯
分析:①利用不等式的性質(zhì)即可判斷出;
②利用一元二次方程的根與系數(shù)的關(guān)系即可判斷出;
③數(shù)列{an}為遞增數(shù)列?an<an+1對于?n∈N*都成立,即可判斷出;
④方程(x+y-2)
x2+y2-9
=0
可化為x+y=2或x2+y2=9,即可判斷出.
解答: 解:①∵a(1+b)-b(1+a)=a-b≥0,∴a(1+b)≥b(1+a),
又a≥b>-1,∴1+a>0,1+b>0,
a
1+a
b
1+b
,因此正確;
②要使一元二次方程ax2+2x+1=0有一個正根和一個負根則
1
a
<0
,解得a<0,
因此a<-1是一元二次方程ax2+2x+1=0有一個正根和一個負根的充分不必要條件,故正確;
③在數(shù)列{an}中,數(shù)列{an}為遞增數(shù)列?an<an+1對于?n∈N*都成立.
因此a1<a2<a3是數(shù)列{an}為遞增數(shù)列的必要不充分條件;
④方程(x+y-2)
x2+y2-9
=0
可化為x+y=2或x2+y2=9,
表示的曲線是圓和一條直線.因此④正確.
綜上可知:①②③④都正確.
故選:D.
點評:本題綜合考查了不等式的性質(zhì)、一元二次方程的根與系數(shù)的關(guān)系、遞增數(shù)列的充分必要條件、方程與曲線的關(guān)系等基礎(chǔ)知識與基本技能方法,屬于難題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的右焦點為(
2
,0),離心率為
6
3

(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l與橢圓C相交于A,B兩點,且以AB為直徑的圓經(jīng)過原點O,求證:點O到直線AB的距離為定值;
(Ⅲ)在(Ⅱ)的條件下,求△OAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
2,x>0
0,x=0
-2,x<0
,下列敘述
(1)f(x)是奇函數(shù);
(2)y=xf(x)是奇函數(shù);
(3)(x+1)f(x)-4<0的解為-3<x<1
(4)xf(x+1)<0的解為-1<x<1;其中正確的是
 
(填序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)z=2x+y,其中變量x,y滿足條件
x-4y≤-3
3x+5y≤25 
x≥1 
,則z的最小值為( 。
A、3B、6.4C、9.6D、12

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

執(zhí)行如圖的程序框圖,若輸入的x值為7,則輸出的x的值為(  )
A、2
B、3
C、log23
D、
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,四棱錐S-ABCD的底面為正方形,SD⊥底面ABCD,則下列結(jié)論中不正確的是( 。
A、AC⊥SB
B、AB∥平面SCD
C、AB與SC所成的角等于DC與SA所成的角
D、SA與平面SBD所成的角等于SC與平面SBD所成的角

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

實數(shù)x,y滿足
x-y-1≤0
x+y-3≤0
x≥1
,則目標函數(shù)z=2x-y的最大值為( 。
A、4B、3C、0D、-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知平面直角坐標系xoy上的區(qū)域D由不等式組
0≤x≤
2
y≤2
x≤
2
y
給定,若M(x,y)為D上的動點,點A(
2
,0),則z=|
AM
|的最大值為( 。
A、6
B、
6
C、4
D、2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知集合Tn={X|X=(x1,x2,…,xn),xiN*,i=1,2,…,n} (n≥2).對于A=(a1,a2,…,an),B=(b1,b2,…,bn)∈Tn,定義;
AB
=(b1-a1b2-a2,…,bn-an)
,λ(a1,a2,…,an)=(λa1,λa2,…,λan)(λ∈R);A與B之間的距離為d(A,B)=
n
i=1
|ai-bi|

(Ⅰ)當n=5時,設(shè)A=(1,2,1,2,a5),B=(2,4,2,1,3).若d(A,B)=7,求a5;
(Ⅱ)證明:若A,B,C∈Tn,且?λ>0,使
AB
BC
,則d(A,B)+d(B,C)=d(A,C);
(Ⅲ)記I=(1,1,…,1)∈Tn.若A,B∈Tn,且d(I,A)=d(I,B)=p,求d(A,B)的最大值.

查看答案和解析>>

同步練習冊答案