已知f(x)是一次函數(shù),f(10)=21,且f(2),f(7),f(22)成等比數(shù)列,則f(1)+f(2)+…+f(n)等于
n2+2n
n2+2n
分析:因?yàn)楹瘮?shù)是一次函數(shù),且f(10)=21,f(2),f(7),f(22)成等比數(shù)列,所以可用待定系數(shù)法求出函數(shù)的解析式,代入f(1)+f(2)+…+f(n),利用等差數(shù)列的求和公式計(jì)算即可.
解答:解:設(shè)f(x)=kx+b,
∵f(10)=21,且f(2),f(7),f(22)成等比數(shù)列,
∴10k+b=21,(7k+b)2=(2k+b)(22k+b)
解得,k=2,b=1,∴f(x)=2x+1.
∴f(1)+f(2)+…+f(n)=(2×1+1)+(2×2+1)+(2×3+1)+…+(2n+1)
=2(1+2+3+…+n)+n=n(n+1)+n=n2+2n
故答案為n2+2n
點(diǎn)評(píng):本題主要考查了待定系數(shù)法求函數(shù)解析式,以及等差數(shù)列前n項(xiàng)和公式的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+2x-6有一個(gè)零點(diǎn)在開區(qū)間(2,3)內(nèi),用二分法求零點(diǎn)時(shí),要使精確度達(dá)到0.001,則至少需要操作(一次操作是指取中點(diǎn)并判斷中點(diǎn)對(duì)應(yīng)的函數(shù)值的符號(hào))的次數(shù)為(  )
A、8B、9C、10D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知函數(shù)f(x)=lnx+2x-6有一個(gè)零點(diǎn)在開區(qū)間(2,3)內(nèi),用二分法求零點(diǎn)時(shí),要使精確度達(dá)到0.001,則至少需要操作(一次操作是指取中點(diǎn)并判斷中點(diǎn)對(duì)應(yīng)的函數(shù)值的符號(hào))的次數(shù)為


  1. A.
    8
  2. B.
    9
  3. C.
    10
  4. D.
    11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=lnx+2x-6有一個(gè)零點(diǎn)在開區(qū)間(2,3)內(nèi),用二分法求零點(diǎn)時(shí),要使精確度達(dá)到0.001,則至少需要操作(一次操作是指取中點(diǎn)并判斷中點(diǎn)對(duì)應(yīng)的函數(shù)值的符號(hào))的次數(shù)為(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2009-2010學(xué)年湖北省荊州中學(xué)高一(上)期中數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題

已知函數(shù)f(x)=lnx+2x-6有一個(gè)零點(diǎn)在開區(qū)間(2,3)內(nèi),用二分法求零點(diǎn)時(shí),要使精確度達(dá)到0.001,則至少需要操作(一次操作是指取中點(diǎn)并判斷中點(diǎn)對(duì)應(yīng)的函數(shù)值的符號(hào))的次數(shù)為( )
A.8
B.9
C.10
D.11

查看答案和解析>>

同步練習(xí)冊(cè)答案