橢圓的離心率是,求橢圓兩準線間的距離。

解:當m+8>9時,m>1,所以=m+8,=9,=m-1,由離心率是得m=4,

所以橢圓兩準線間的距離=8;當m+8<9時,m<1,

所以=9,= m+8,=1-m,

由離心率是得m=,所以橢圓兩準線間的距離=12.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,F(xiàn)1,F(xiàn)2為橢圓C:
x2
a2
+
y2
b2
=1
(a>b>0)的左、右焦點,D,E是橢圓的兩個頂點,橢圓的離心率e=
3
2
,S△DEF2=1-
3
2
.若點M(x0,y0)在橢圓C上,則點N(
x0
a
,
y0
b
)稱為點M的一個“橢點”.直線l與橢圓交于A,B兩點,A,B兩點的“橢點”分別為P,Q,已知以PQ為直徑的圓經(jīng)過坐標原點O.
(1)求橢圓C的標準方程;
(2)△AOB的面積是否為定值?若為定值,試求出該定值;若不為定值,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分13分)

  如圖,已知橢圓的離心率為,以該橢圓上的點和橢圓的

  左、右焦點為頂點的三角形的周長為.一等軸雙曲線的頂點是該橢

  圓的焦點,設為該雙曲線上異于頂點的任一點,直線與橢圓的交點

  分別 為

   (Ⅰ)求橢圓和雙曲線的標準方程; 

   (Ⅱ)設直線、的斜率分別為、,證明

   (Ⅲ)是否存在常數(shù),使得恒成立?

      若存在,求的值;若不存在,請說明理由.

                                                             

查看答案和解析>>

同步練習冊答案