【題目】已知函數(shù),其中數(shù)列是公比為的等比數(shù)列,數(shù)列是公差為的等差數(shù)列.

1)若,,分別寫出數(shù)列和數(shù)列的通項公式;

2)若是奇函數(shù),且,求;

3)若函數(shù)的圖像關(guān)于點對稱,且當(dāng)時,函數(shù)取得最小值,求的最小值.

【答案】(1),;(2;(31

【解析】

(1)根據(jù)等差數(shù)列、等比數(shù)列的通項公式即可求解;

(2)根據(jù)奇函數(shù)的定義得出,化簡得,解方程可得

(3)化成的形式,依題意有,從而得到,因為當(dāng)時,函數(shù)取得最小值,所以,兩式相減即可求解.

1)由等差數(shù)列、等比數(shù)列的通項公式可得

2

因為,所以

,所以

又由,得

3

,其中;

因為的圖像關(guān)于點對稱,所以

因為當(dāng)時,函數(shù)取得最小值,所以

②-①,因為

當(dāng),時,取得最小值為0

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),.

(1)若,求的單調(diào)區(qū)間;

(2)求函數(shù)上的最值;

(3)當(dāng)時,若函數(shù)恰有兩個不同的零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在甲地,隨著人們生活水平的不斷提高,進(jìn)入電影院看電影逐漸成為老百姓的一種娛樂方式.我們把習(xí)慣進(jìn)入電影院看電影的人簡稱為“有習(xí)慣”的人,否則稱為“無習(xí)慣的人”.某電影院在甲地隨機(jī)調(diào)查了100位年齡在15歲到75歲的市民,他們的年齡的頻數(shù)分布和“有習(xí)慣”的人數(shù)如下表:

(1)以年齡45歲為分界點,請根據(jù)100個樣本數(shù)據(jù)完成下面列聯(lián)表,并判斷是否有的把握認(rèn)為“有習(xí)慣”的人與年齡有關(guān);

(2)已知甲地從15歲到75歲的市民大約有11萬人,以頻率估計概率,若每張電影票定價為,則在“有習(xí)慣”的人中約有的人會買票看電影(為常數(shù)).已知票價定為30元的某電影,票房達(dá)到了 69.3萬元.某新影片要上映,電影院若將電影票定價為25元,那么該影片票房估計能達(dá)到多少萬元?

參考公式:,其中.

參考臨界值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知

(1)討論函數(shù)的單調(diào)性;

(2)若對任意,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的幾何體中,平面.

(1)證明:平面;

(2)過點作一平行于平面的截面,畫出該截面,說明理由,并求夾在該截面與平面之間的幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)的定義域為R,并且圖象關(guān)于y軸對稱,當(dāng)x≤-1時,yf(x)的圖象是經(jīng)過點(-2,0)(-1,1)的射線,又在yf(x)的圖象中有一部分是頂點在(0,2),且經(jīng)過點(1,1)的一段拋物線.

(1)試求出函數(shù)f(x)的表達(dá)式,作出其圖象;

(2)根據(jù)圖象說出函數(shù)的單調(diào)區(qū)間,以及在每一個單調(diào)區(qū)間上函數(shù)是增函數(shù)還是減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中.

1)若函數(shù)是奇函數(shù),試證明:對任意的,恒有

2)若對于,函數(shù)在區(qū)間上的最大值是3,試求實數(shù)的值;

3)設(shè),問:是否存在實數(shù),使得對任意的,都有?如果存在,請求出的取值范圍;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在中,,D,E分別為的中點,點F為線段上的一點,將沿折起到的位置,使,如圖2.

(1)求二面角

(2)線段上是否存在點,使平面?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)是奇函數(shù),且f(2).

(1)求實數(shù)mn的值;

(2)求函數(shù)f(x)在區(qū)間[-2,-1]上的最值.

查看答案和解析>>

同步練習(xí)冊答案