精英家教網 > 高中數學 > 題目詳情
對于在區(qū)間[a,b]上有意義的兩個函數m(x)與n(x),如果對于區(qū)間[a,b]中的任意x均有|m(x)-n(x)|≤1,則稱m(x)與n(x)在[a,b]上是“密切函數”,[a,b]稱為“密切區(qū)間”,若函數m(x)=x2-3x+4與n(x)=2x-3在區(qū)間[a,b]上是“密切函數”,則密切區(qū)間為
[2,3]
[2,3]
分析:利用“密切函數”的定義,列出不等式求出x的范圍,即可得到密切區(qū)間.
解答:解:由題意,|m(x)-n(x)|=|x2-5x+7|=|(x-
5
2
2+
3
4
|=(x-
5
2
2+
3
4
≤1
∴(x-
5
2
2
1
4

解得2≤x≤3
故答案為:[2,3]
點評:本題考查新定義,解題的關鍵是將問題等價轉化為不等式的解集問題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

對于在區(qū)間[a,b]上有意義的兩具函數f(x)與g(x),如果對于任意x∈[a,b],均有|f(x)-g(x)|≤1,則稱f(x)與g(x)在區(qū)間[a,b]上是接近的,若函數y=x2-3x+4與函數y=2x-3在區(qū)間[a,b]上是接近的,則該區(qū)間可以是
 

查看答案和解析>>

科目:高中數學 來源: 題型:

對于在區(qū)間[a,b]上有意義的兩個函數m(x)與n(x),如果對于區(qū)間[a,b]中的任意x均有|m(x)-n(x)|≤1,則稱m(x)與n(x)在[a,b]上是“密切函數”,[a,b]稱為“密切區(qū)間”,若函數m(x)=x2-3x+4與n(x)=2x-3在區(qū)間[a,b]上是“密切函數”,則b-a的最大值為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

對于在區(qū)間[a,b]上有意義的兩個函數f(x)和g(x),如果對任意x∈[a,b],均有|f(x)-g(x)|≤1,那么我們稱f(x)和g(x)在[a,b]上是接近的.若f(x)=log2(ax+1)與g(x)=log2x在閉區(qū)間[1,2]上是接近的,則a的取值范圍是
[0,1]
[0,1]

查看答案和解析>>

科目:高中數學 來源: 題型:

對于在區(qū)間[a,b]上有意義的兩個函數f(x)和g(x),如果對任意x∈[a,b],均有|f(x)-g(x)|≤1,那么我們稱f(x)和g(x)在[a,b]上是接近的.若f(x)=log2(cx+1)與g(x)=log2x在閉區(qū)間[1,2]上是接近的,則c的取值范圍是( 。

查看答案和解析>>

同步練習冊答案