【題目】若命題p:函數(shù)y=x2﹣2x的單調遞增區(qū)間是[1,+∞),命題q:函數(shù)y=x﹣ 的單調遞增區(qū)間是[1,+∞),則(
A.p∧q是真命題
B.p∨q是假命題
C.非p是真命題
D.非q是真命題

【答案】D
【解析】解:∵函數(shù)y=x2﹣2x的單調遞增區(qū)間是[1,+∞),∴命題p為真命題;
∵函數(shù)y=x﹣ 的單調遞增區(qū)間是(﹣∞,0)和(0,+∞),∴命題q為假命題;
∴p∧q是假命題,A錯誤;
p∨q是真命題,B錯誤;
非p是假命題,C錯誤;
非q是真命題,D正確.
故選:D.
【考點精析】本題主要考查了復合命題的真假的相關知識點,需要掌握“或”、 “且”、 “非”的真值判斷:“非p”形式復合命題的真假與F的真假相反;“p且q”形式復合命題當P與q同為真時為真,其他情況時為假;“p或q”形式復合命題當p與q同為假時為假,其他情況時為真才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖1,在Rt△ABC中,∠C=90°,BC=3,AC=6,D,E分別是AC,AB上的點,且DE∥BC,DE=2,將△ADE沿DE折起到△A1DE的位置,使A1C⊥CD,如圖2.

(1)求證:A1C⊥平面BCDE;
(2)若M是A1D的中點,求CM與平面A1BE所成角的大;
(3)線段BC上是否存在點P,使平面A1DP與平面A1BE垂直?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項等差數(shù)列的前項和為,若,且成等比數(shù)列.

(1)求的通項公式;

(2)設,記數(shù)列的前項和為,求

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)y=f(x)由方程x|x|+y|y|=1確定,下列結論正確的是(請將你認為正確的序號都填上)
·(1)f(x)是R上的單調遞減函數(shù);
·(2)對于任意x∈R,f(x)+x>0恒成立;
·(3)對于任意a∈R,關于x的方程f(x)=a都有解;
·(4)f(x)存在反函數(shù)f1(x),且對于任意x∈R,總有f(x)=f1(x)成立.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知點A(2,8)在拋物線,直線l和拋物線交于B,C兩點,焦點F是三角形ABC的重心,MBC的中點(不在x軸上)

(1)求M點的坐標;

(2)求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題共13分)

如圖,正方形ABCD和四邊形ACEF所在的平面互相垂直。

EF//AC,AB=,CE=EF=1

)求證:AF//平面BDE;

)求證:CF⊥平面BDF;

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】三角形ABC中,內角A,B,C所對邊a,b,c成公比小于1的等比數(shù)列,且sinB+sin(A﹣C)=2sin2C.
(1)求內角B的余弦值;
(2)若b= ,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若樣本的平均數(shù)是,方差是,則對樣本,下列結論正確的是 ( )

A. 平均數(shù)為14,方差為5 B. 平均數(shù)為13,方差為25

C. 平均數(shù)為13,方差為5 D. 平均數(shù)為14,方差為2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中裝有5個大小相同的球,其中有2個白球,2個黑球,1個紅球,現(xiàn)從袋中每次取出1球,去除后不放回,直到取到有兩種不同顏色的球時即終止,用表示終止取球時所需的取球次數(shù),則隨機變量的數(shù)字期望是(

A. B. C. D.

查看答案和解析>>

同步練習冊答案