已知橢圓
x2
a2
+
y2
b2
=1(a>b>0),F(xiàn)1(-1,0)、F2(1,0)是橢圓的左右焦點(diǎn),且橢圓經(jīng)過(guò)點(diǎn)(1,
3
2
).
(1)求該橢圓方程;
(2)過(guò)點(diǎn)F1且傾斜角等于
3
4
π的直線l,交橢圓于M、N兩點(diǎn),求△MF2N的面積.
考點(diǎn):直線與圓錐曲線的綜合問(wèn)題
專題:圓錐曲線中的最值與范圍問(wèn)題
分析:(1)由已知條件推導(dǎo)出
a2=b2+1
1
a2
+
9
4b2
=1
,由此能求出橢圓方程.
(2)設(shè)M(x1,y1),N(x2,y2),直線l:y=-x-1.由
y=-x-1
x2
4
+
y2
3
=1
,得7x2+8x-8=0,由此利用韋達(dá)定理和弦長(zhǎng)公式能求出△MF2N的面積.
解答: 解:(1)∵橢圓
x2
a2
+
y2
b2
=1(a>b>0),F(xiàn)1(-1,0)、F2(1,0)是橢圓的左右焦點(diǎn),
且橢圓經(jīng)過(guò)點(diǎn)(1,
3
2
),
a2=b2+1
1
a2
+
9
4b2
=1
,解得a2=4,b2=3,
∴橢圓方程為
x2
4
+
y2
3
=1
.…6分
(2)設(shè)M(x1,y1),N(x2,y2),直線l:y=-x-1.…8分
y=-x-1
x2
4
+
y2
3
=1
,得7x2+8x-8=0,…10分
△>0,x1+x2=-
8
7
x1x2=-
8
7

S△MF2N=
1
2
|F1F2||y1-y2|
=|y1-y2|=|(-x1-1)-(-x2-1)|=|x2-x1|
=
(x2+x1)2-4x1x2

=
(-
8
7
)2+4×
8
7
=
12
2
7
.…14分.
點(diǎn)評(píng):本題考查橢圓方程的求法,考查三角形面積的求法,解題時(shí)要認(rèn)真審題,注意橢圓弦長(zhǎng)公式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

計(jì)算下列各式的值.
(1)log2
7
48
+log212-
1
2
log242;
(2)lg52+
2
3
lg8+lg5•lg20+lg22.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙兩人參加某種選拔測(cè)試.在備選的10道題中,甲答對(duì)其中每道題的概率都是
3
5
,乙能答對(duì)其中的5道題.規(guī)定每次考試都從備選的10道題中隨機(jī)抽出3道題進(jìn)行測(cè)試,答對(duì)一題加10分,答錯(cuò)一題(不答視為答錯(cuò))減5分,至少得15分才能入選.
(Ⅰ)分別求甲得0分和乙得0分的概率;
(Ⅱ)求甲、乙兩人中至少有一人入選的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)S={x|x≤3},T={x|x<1},求S∩T,S∪T,(∁US)∩T,(∁US)∩(∁UT),∁U(S∪T).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱柱ABC-A1B1C1中,側(cè)棱BB1⊥底面ABC,∠BAC=90°,AB=AC=AA1=2,且E是BC中點(diǎn).
(I)求錐體A1-B1C1EB的體積;
(Ⅱ)求證:B1C⊥AC1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)若loga
2
5
<1,求a的取值范圍;
(2)求滿足不等式log3x<1的x的取值集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn,且Sn+an=-
1
2
n2-
3
2
n+1(n∈N*),設(shè)bn=an+n.
(Ⅰ)證明:數(shù)列{bn}是等比數(shù)列;
(Ⅱ)求數(shù)列{nbn}的前n項(xiàng)和Tn
(Ⅲ)設(shè)cn=(
1
2
n-an,dn=
cn2+cn+1
cn2+cn
,若數(shù)列{dn}的前2013項(xiàng)和為P,求不超過(guò)P的最大的整數(shù)值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)求函數(shù)f(x)=
1
x+1
+
4-x2
的定義域;
(2)求函數(shù)y=2x-
x-1
的值域;
(3)已知函數(shù)y=
ax+b
x2+1
的值域?yàn)閇-2,2],求a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

經(jīng)過(guò)圓x2+2x+y2=0的圓心C,且與直線x+y=0垂直的直線方程是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案