復(fù)平面上矩形ABCD的四個頂點中,A、B、C所對應(yīng)的復(fù)數(shù)分別為2+3i、3+2i、-2-3i,則D點對應(yīng)的復(fù)數(shù)是( 。
A、-2+3iB、-3-2i
C、2-3iD、3-2i
考點:復(fù)數(shù)的代數(shù)表示法及其幾何意義
專題:數(shù)系的擴(kuò)充和復(fù)數(shù)
分析:根據(jù)復(fù)數(shù)的幾何意義以及矩形的性質(zhì)即可得到結(jié)論.
解答: 解:根據(jù)復(fù)數(shù)的幾何意義可得A(2,3),B(3,2),C(-2,-3),
設(shè)D(x,y),
AD
=
BC

即(x-2,y-3)=(-5,-5),
x-2=-5
y-3=-5
,解得x=-3,y=-2,
即D點對應(yīng)的復(fù)數(shù)是-3-2i,
故選:B.
點評:本題主要考查復(fù)數(shù)的幾何意義,利用矩形的對邊平行且相等是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=x2+k,若存在區(qū)間[a,b]?(-∞,0],使得當(dāng)x∈[a,b]時,f(x)的取值范圍恰為[a,b],則實數(shù)k的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

實數(shù)x,y滿足
x≥2
x-2y+4≥0
2x-y-4≤0
,若z=kx-y的最大值為13,則實數(shù)k的值為(  )
A、
17
4
B、
13
2
C、2
D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某個幾何體的三視圖如圖所示,根據(jù)圖中標(biāo)出的尺寸,可得這個幾何體的表面積是(  )
A、73B、79
C、103D、108

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,2),
b
=(1,1),且
a
a
b
的夾角為銳角,則實數(shù)λ的取值范圍為( 。
A、(
5
3
,+∞)
B、(-∞,-
5
3
C、(-
5
3
,0)
D、(-
5
3
,0)∪(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z=a+
3
i在復(fù)平面內(nèi)對應(yīng)的點位于第二象限,且|z|=2,則復(fù)數(shù)z等于( 。
A、-1+
3
i
B、1+
3
i
C、-1+
3
i或1+
3
i
D、-2+
3
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

執(zhí)行如圖所示的程序框圖,輸入m=39,n=27,則輸出的實數(shù)m的值是(  )
A、27B、12C、9D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

tan10°+tan50°+
3
tan10°tan50°的值為( 。
A、-
3
B、
3
C、3
D、
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知z,ω為復(fù)數(shù),(1+3i)•z為純虛數(shù),ω=
z
2+i
,且|ω|=5
2
,求復(fù)數(shù)z及ω(設(shè)z=x+yi,x、y∈R)

查看答案和解析>>

同步練習(xí)冊答案