如圖2-3-6,直角梯形ABCD中,以CD為直徑的圓恰好與腰AB相切.

求證:以AB為直徑的圓也與腰CD相切.

2-3-6

思路分析:取CD、AB中點(diǎn)O1、O2,則O1、O2分別是兩圓圓心,只需證O2到CD距離等于O2A或O2B即可.

證明:連結(jié)O1O2,作O2E⊥O1D于E,DF⊥O1O2于F.

∵O1C=O1D,O2B=O2A,

∴O1O2∥AD∥BC.

∴AB⊥O1O2.∴DF=AO2.

∵AB與⊙O1相切,∴O1O2=O1D.

∴△O1O2E≌△O1DF.∴O2E=DF.∴O2E=O2A.

∴⊙O2與CD相切于E點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣東)如圖1,在等腰直角三角形ABC中,∠A=90°,BC=6,D,E分別是AC,AB上的點(diǎn),CD=BE=
2
,O為BC的中點(diǎn).將△ADE沿DE折起,得到如圖2所示的四棱椎A(chǔ)′-BCDE,其中A′O=
3

(1)證明:A′O⊥平面BCDE;
(2)求二面角A′-CD-B的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•懷化二模)如圖展示了一個由區(qū)間(0,k)(其中k為一正實(shí)數(shù))到實(shí)數(shù)集R上的映射過程:區(qū)間(0,k)中的實(shí)數(shù)m對應(yīng)線段AB上的點(diǎn)M,如圖1;將線段AB圍成一個離心率為
3
2
的橢圓,使兩端點(diǎn)A、B恰好重合于橢圓的一個短軸端點(diǎn),如圖2;再將這個橢圓放在平面直角坐標(biāo)系中,使其中心在坐標(biāo)原點(diǎn),長軸在x軸上,已知此時點(diǎn)A的坐標(biāo)為(0,1),如圖3,在圖形變化過程中,圖1中線段AM的長度對應(yīng)于圖3中的橢圓弧ADM的長度.圖3中直線AM與直線y=-2交于點(diǎn)N(n,-2),則與實(shí)數(shù)m對應(yīng)的實(shí)數(shù)就是n,記作f(m)=n,

現(xiàn)給出下列5個命題①f(
k
2
)=6
;②函數(shù)f(m)是奇函數(shù);③函數(shù)f(m)在(0,k)上單調(diào)遞增;④函數(shù)f(m)的圖象關(guān)于點(diǎn)(
k
2
,0)
對稱;⑤函數(shù)f(m)=3
3
時AM過橢圓的右焦點(diǎn).其中所有的真命題是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)輪滑是穿著帶滾輪的特制鞋在堅(jiān)硬的場地上滑行的運(yùn)動.如圖,助跑道ABC是一段拋物線,某輪滑運(yùn)動員通過助跑道獲取速度后飛離跑道然后落到離地面高為1米的平臺上E處,飛行的軌跡是一段拋物線CDE(拋物線CDE與拋物線ABC在同一平面內(nèi)),D為這段拋物線的最高點(diǎn).現(xiàn)在運(yùn)動員的滑行軌跡所在平面上建立如圖所示的直角坐標(biāo)系,x軸在地面上,助跑道一端點(diǎn)A(0,4),另一端點(diǎn)C(3,1),點(diǎn)B(2,0),單位:米.
(Ⅰ)求助跑道所在的拋物線方程;
(Ⅱ)若助跑道所在拋物線與飛行軌跡所在拋物線在點(diǎn)C處有相同的切線,為使運(yùn)動員安全和空中姿態(tài)優(yōu)美,要求運(yùn)動員的飛行距離在4米到6米之間(包括4米和6米),試求運(yùn)動員飛行過程中距離平臺最大高度的取值范圍?
(注:飛行距離指點(diǎn)C與點(diǎn)E的水平距離,即這兩點(diǎn)橫坐標(biāo)差的絕對值.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖2-3-6,BC是Rt△ABC的斜邊,AP⊥平面ABC,PD⊥BC于D點(diǎn),則圖中共有直角三角形的個數(shù)是(    )

圖2-3-6

A.8            B.7              C.6            D.5

查看答案和解析>>

同步練習(xí)冊答案