在△ABC中,若最大角的正弦值是
2
2
,則△ABC必是( 。
A、等邊三角形
B、直角三角形
C、鈍角三角形
D、銳角三角形
考點(diǎn):三角形的形狀判斷
專題:
分析:由題意可得最大角為45°,或135°,反證法結(jié)合三角形的內(nèi)角和可排除45°,可得結(jié)論.
解答: 解:由題意可得最大角的正弦值是
2
2
,
∴最大角為45°,或135°,
顯然45°不合適,
因?yàn)槿糇畲蠼菫?5°,則不滿足內(nèi)角和為180°,
故只有最大角為135°,故△ABC必是鈍角三角形
故選:C
點(diǎn)評:本題考查三角形形狀的判斷,涉及反證法的思想,屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ax3+x恰有三個(gè)單調(diào)區(qū)間,則a的取值范圍是( 。
A、(-∞,-
1
3
]
B、[-
1
3
,+∞)
C、[0,+∞)
D、(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列求導(dǎo)運(yùn)算錯(cuò)誤的是( 。
A、x′=1
B、(log2x)′=
1
x
ln2
C、(ex)′=ex
D、(sinx)′=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與60°角終邊相同的角的集合可以表示為(  )
A、{α|α=k•360°+
π
3
,k∈Z}
B、{α|α=2kπ+60°,k∈Z}
C、{α|α=k•180°+60°,k∈Z}
D、{α|α=2kπ+
π
3
,k∈Z}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知雙曲線
x2
a2
-
y2
b2
=1,(a>b>0),兩漸近線的夾角為
π
3
,則雙曲線的離心率為( 。
A、
2
3
3
B、
3
C、2
D、2或
2
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方體ABCD-A1B1C1D1中,M,N分別為AB,DC中點(diǎn),則直線MC與D1N所成角的余弦值為( 。
A、
1
3
B、
1
5
C、-
1
5
D、-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)M(x,y)到定點(diǎn)F1(2,0)的距離和它到定直線l:x=8的距離的比是常數(shù)
1
2

(1)求點(diǎn)M的軌跡C;
(2)求過F2(-2,0)且傾斜角為45°的直線被曲線C所截的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,角A,B,C的對邊分別是a,b,c且滿足(2a-c)cosB=bcosC,
(1)求角B的大;
(2)若△ABC的面積為
3
3
4
b=
3
,求a+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若中心在坐標(biāo)原點(diǎn),對稱軸為坐標(biāo)軸的橢圓經(jīng)過點(diǎn)(4,0),離心率為
3
2
,求橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊答案