已知拋物線的準(zhǔn)線與圓相切,則的值為         
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知拋物線C的頂點在原點,焦點為
(1)求拋物線C的方程;
(2)已知直線與拋物線C交于兩點,且,求的值;
(3)設(shè)點是拋物線C上的動點,點、軸上,圓內(nèi)切于,求的面積最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

:如圖,在平面直角坐標(biāo)系xoy中,拋物線yx2x-10與x軸的交點為A,與y軸的交點為點B,過點Bx軸的平行線BC,交拋物線于點C,連結(jié)AC.現(xiàn)有兩動點P,Q分別從O,C兩點同時出發(fā),點P以每秒4個單位的速度沿OA向終點A移動,點Q以每秒1個單位的速度沿CB向點B移動,點P停止運動時,點Q也同時停止運動.線段OCPQ相交于點D,過點DDEOA,交CA于點E,射線QEx軸于點F.設(shè)動點P,Q移動的時間為t(單位:秒)
(1)求A,BC三點的坐標(biāo)和拋物線的頂點坐標(biāo);
(2)當(dāng)t為何值時,四邊形PQCA為平行四邊形?請寫出計算過程;
(3)當(dāng)t∈(0)時,△PQF的面積是否總為定值?若是,求出此定值;若不是,請說明理由;
(4)當(dāng)t為何值時,△PQF為等腰三角形?請寫出解答過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

是拋物線上一動點,則點到點的距離與到直線的距離和的最小值是
A.B.C.2D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

拋物線2y2+x=0的焦點坐標(biāo)是               (     )
A.(-,0)B.(0,-) C.(-,0)D.(0,-)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題13分)
已知拋物線方程為,過作直線.
①若軸不垂直,交拋物線于A、B兩點,是否存在軸上一定點,使得?若存在,求出m的值;若不存在,請說明理由?
②若軸垂直,拋物線的任一切線與軸和分別交于M、N兩點,則自點M到以QN為直徑的圓的切線長為定值,試證之;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點和點分別是拋物線的頂點和焦點,點為拋物線上的任意一點,則的取值范圍為 ( *** )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題12分)
已知頂點在原點,焦點在軸上的拋物線與直線交于P、Q兩點,|PQ|=,求拋物線的方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若拋物線的焦點坐標(biāo)為,則拋物線的標(biāo)準(zhǔn)方程是                  .

查看答案和解析>>

同步練習(xí)冊答案