【題目】2019112日,中國藥品監(jiān)督管理局批準(zhǔn)了治療阿爾茨海默。ɡ夏臧V呆癥)新藥GV-971的上市申請(qǐng),這款新藥由我國科研人員研發(fā),我國擁有完全知識(shí)產(chǎn)權(quán).據(jù)悉,該款藥品為膠囊,從外觀上看是兩個(gè)半球和一個(gè)圓柱組成,其中上半球是膠囊的蓋子,粉狀藥物儲(chǔ)存在圓柱及下半球中.膠囊軸截面如圖所示,兩頭是半圓形,中間區(qū)域是矩形,其周長為50毫米,藥物所占的體積為圓柱體積和一個(gè)半球體積之和.假設(shè)的長為毫米.(注:,其中為球半徑,為圓柱底面積,為圓柱的高)

1)求膠囊中藥物的體積關(guān)于的函數(shù)關(guān)系式;

2)如何設(shè)計(jì)的長度,使得最大?

【答案】(1) ,. (2) 毫米,毫米

【解析】

1)利用已知條件結(jié)合體積公式求出膠囊中藥物的體積關(guān)于的函數(shù)關(guān)系式;

2)通過函數(shù)的導(dǎo)數(shù),判斷函數(shù)的單調(diào)性求解函數(shù)的最值即可得到答案.

解:(1)由,,所以,

所以藥物體積,.

2)求導(dǎo)得,令,得(舍),

當(dāng),,在區(qū)間上單調(diào)增,

當(dāng),,在區(qū)間上單調(diào)減,

所以當(dāng)時(shí),有最大值,此時(shí),

答:當(dāng)毫米,毫米時(shí),藥物的體積有最大值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是關(guān)于的方程的兩個(gè)虛數(shù)根,若、在復(fù)平面上對(duì)應(yīng)的點(diǎn)構(gòu)成直角三角形,那么實(shí)數(shù)_______________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn),點(diǎn)是圓上的任意一點(diǎn),設(shè)為該圓的圓心,并且線段的垂直平分線與直線交于點(diǎn).

(1)求點(diǎn)的軌跡方程;

(2)已知兩點(diǎn)的坐標(biāo)分別為, ,點(diǎn)是直線上的一個(gè)動(dòng)點(diǎn),且直線分別交(1)中點(diǎn)的軌跡于兩點(diǎn)(四點(diǎn)互不相同),證明:直線恒過一定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處的切線斜率為.

(1)求實(shí)數(shù)的值,并討論函數(shù)的單調(diào)性;

(2)若,證明:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線C的方程為.以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(1)求曲線C的參數(shù)方程和直線的直角坐標(biāo)方程;

(2)若直線軸和y軸分別交于A,B兩點(diǎn),P為曲線C上的動(dòng)點(diǎn),求PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的離心率為,且過點(diǎn)

求橢圓C的方程;

若過點(diǎn)的直線與橢圓C相交于A,B兩點(diǎn),設(shè)P點(diǎn)在直線上,且滿足為坐標(biāo)原點(diǎn),求實(shí)數(shù)t的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】[選修4-4:坐標(biāo)系與參數(shù)方程]

在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,過點(diǎn)的直線的參數(shù)方程為:為參數(shù)),直線與曲線分別交于、兩點(diǎn).

(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;

(2)求線段的長和的積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國是世界上嚴(yán)重缺水的國家,某市為了制定合理的節(jié)水方案,對(duì)居民用水情況進(jìn)行調(diào)查,通過抽樣,獲得某年100為居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照分成9組,制成了如圖所示的頻率分布直方圖.

(1)求直方圖的的值;

(2)設(shè)該市有30萬居民,估計(jì)全市居民中月均用水量不低于3噸的人數(shù),說明理由.

(3)估計(jì)居民月用水量的中位數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面立角坐標(biāo)系中,過點(diǎn)的圓的圓心軸上,且與過原點(diǎn)傾斜角為的直線相切.

(1)求圓的標(biāo)準(zhǔn)方程;

(2)點(diǎn)在直線上,過點(diǎn)作圓的切線、,切點(diǎn)分別為、,求經(jīng)過、四點(diǎn)的圓所過的定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案