設關于x的函數(shù)f(x)=mx2-(2m2+4m+1)x+(m+2)lnx,其中m為實數(shù)集R上的常數(shù),函數(shù)f(x)在x=1處取得極值0.
(Ⅰ)已知函數(shù)f(x)的圖象與直線y=k有兩個不同的公共點,求實數(shù)k的取值范圍;
(Ⅱ)設函數(shù),其中p≤0,若對任意的x∈[1,2],總有2f(x)≥g(x)+4x-2x2成立,求p的取值范圍.
【答案】分析:(Ⅰ)求導函數(shù),利用函數(shù)f(x)在x=1處取得極值0,建立方程組,從而可求函數(shù)解析式,確定函數(shù)的單調性與最值,即可求得結論;
(Ⅱ)設,若對任意的x∈[1,2],2f(x)≥g(x)+4x-2x2恒成立,則F(x)的最小值F(x)min≥0,分類討論,即可求p的取值范圍.
解答:解:(Ⅰ)求導函數(shù)可得:
∵函數(shù)f(x)在x=1處取得極值0

∴m=-1…(4分)

令f'(x)=0得x=1或(舍去)
當0<x<1時,f'(x)>0;當x>1時,f'(x)<0.
∴函數(shù)f(x)在區(qū)間(0,1)上單調遞增,在區(qū)間(1,+∞)上單調遞減.
∴當x=1時,函數(shù)f(x)取得極大值,即最大值為f(1)=0 …(6分)
∴當k<0時,函數(shù)f(x)的圖象與直線y=k有兩個交點…(7分)
(Ⅱ)設
若對任意的x∈[1,2],2f(x)≥g(x)+4x-2x2恒成立,則F(x)的最小值F(x)min≥0(*)…(9分)
(1)當p=0時,,F(xiàn)(x)在[1,2]遞增
所以F(x)的最小值F(1)=-2<0,不滿足(*)式
所以p=0不成立…(11分)
(2)當p≠0時,
①當-1<p<0時,,此時F(x)在[1,2]遞增,F(xiàn)(x)的最小值F(1)=-2p-2<0,不滿足(*)式
②當p<-1時,,F(xiàn)(x)在[1,2]遞增,所以F(x)min=F(1)=-2p-2≥0,解得p≤-1,此時p<-1滿足(*)式
③當p=-1時,F(xiàn)(x)在[1,2]遞增,F(xiàn)(x)min=F(1)=0,p=-1滿足(*)式
綜上,所求實數(shù)p的取值范圍為p≤-1…(14分)
點評:本題考查導數(shù)知識的運用,考查函數(shù)的極值與單調性,考查恒成立問題,考查分類討論的數(shù)學思想,正確求函數(shù)的最值是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2012年山東省年高考數(shù)學壓軸卷(文科)(解析版) 題型:解答題

設關于x的函數(shù)f(x)=mx2-(2m2+4m+1)x+(m+2)lnx,其中m為實數(shù)集R上的常數(shù),函數(shù)f(x)在x=1處取得極值0.
(Ⅰ)已知函數(shù)f(x)的圖象與直線y=k有兩個不同的公共點,求實數(shù)k的取值范圍;
(Ⅱ)設函數(shù),其中p≤0,若對任意的x∈[1,2],總有2f(x)≥g(x)+4x-2x2成立,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:江西省月考題 題型:解答題

設關于x的函數(shù)f(x)=mx2﹣(2m2+4m+1)x+(m+2)lnx,其中m為R上的常數(shù),若函數(shù)f(x)在x=1處取得極大值0.
(1)求實數(shù)m的值;
(2)若函數(shù)f(x)的圖象與直線y=k有兩個交點,求實數(shù)k的取值范圍;
(3)設函數(shù) ,若對任意的x∈[1,2],2f(x)≥g(x)+4x﹣2x2恒成立,求實數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年湖北省黃岡市浠水二中高三(上)9月數(shù)學滾動試卷(文科)(解析版) 題型:解答題

設關于x的函數(shù)f(x)=mx2-(2m2+4m+1)x+(m+2)lnx,其中m為R上的常數(shù),若函數(shù)f(x)在x=1處取得極大值0.
(1)求實數(shù)m的值;
(2)若函數(shù)f(x)的圖象與直線y=k有兩個交點,求實數(shù)k的取值范圍;
(3)設函數(shù),若對任意的x∈[1,2],2f(x)≥g(x)+4x-2x2恒成立,求實數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年湖北省荊州中學高三(上)9月質量檢查數(shù)學試卷(文科)(解析版) 題型:解答題

設關于x的函數(shù)f(x)=mx2-(2m2+4m+1)x+(m+2)lnx,其中m為R上的常數(shù),若函數(shù)f(x)在x=1處取得極大值0.
(1)求實數(shù)m的值;
(2)若函數(shù)f(x)的圖象與直線y=k有兩個交點,求實數(shù)k的取值范圍;
(3)設函數(shù),若對任意的x∈[1,2],2f(x)≥g(x)+4x-2x2恒成立,求實數(shù)p的取值范圍.

查看答案和解析>>

同步練習冊答案