已知y=f(x)在定義域(-1,1)上是減函數(shù),且f(1-a)<f(2a-1),則a的取值范圍是( 。
分析:由f(1-a)<f(2a-1),根據(jù)函數(shù)的定義域以及函數(shù)的單調(diào)遞減函數(shù)的定義自變量小的函數(shù)值大進行建立不等關(guān)系,解之即可.
解答:解:∵f(x)在定義域(-1,1)上是減函數(shù),且f(1-a)<f(2a-1)
-1<1-a<1
-1<2a-1<1
1-a>2a-1

解得0<a<
2
3

故選C
點評:本題主要考查了函數(shù)的單調(diào)性及單調(diào)區(qū)間,以及利用單調(diào)性求解不等式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點F(a,0)(a>0),直線l:x=-a,點E是l上的動點,過點E垂直于y軸的直線與線段EF的垂直平分線交于點P.
(1)求點P的軌跡M的方程;
(2)若曲線M上在x軸上方的一點A的橫坐標(biāo)為a,過點A作兩條傾斜角互補的直線,與曲線M的另一個交點分別為B、C,求證:直線BC的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax+
bx-1
-a(a∈R,a≠0)在x=3處的切線方程為(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求證:曲線g(x)上的任意一點處的切線與直線x=0和直線y=ax圍成的三角形面積為定值;
(2)若f(3)=3,是否存在實數(shù)m,k,使得f(x)+f(m-x)=k對于定義域內(nèi)的任意x都成立;
(3)若方程f(x)=t(x2-2x+3)|x|有三個解,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)f(x)=ax+數(shù)學(xué)公式-a(a∈R,a≠0)在x=3處的切線方程為(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求證:曲線g(x)上的任意一點處的切線與直線x=0和直線y=ax圍成的三角形面積為定值;
(2)若f(3)=3,是否存在實數(shù)m,k,使得f(x)+f(m-x)=k對于定義域內(nèi)的任意x都成立;
(3)若方程f(x)=t(x2-2x+3)|x|有三個解,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年遼寧省鞍山一中高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

已知函數(shù)f(x)=ax+-a(a∈R,a≠0)在x=3處的切線方程為(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求證:曲線g(x)上的任意一點處的切線與直線x=0和直線y=ax圍成的三角形面積為定值;
(2)若f(3)=3,是否存在實數(shù)m,k,使得f(x)+f(m-x)=k對于定義域內(nèi)的任意x都成立;
(3)若方程f(x)=t(x2-2x+3)|x|有三個解,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年江蘇省南通市啟東中學(xué)高三(下)5月月考數(shù)學(xué)試卷(解析版) 題型:解答題

已知函數(shù)f(x)=ax+-a(a∈R,a≠0)在x=3處的切線方程為(2a-1)x-2y+3=0
(1)若g(x)=f(x+1),求證:曲線g(x)上的任意一點處的切線與直線x=0和直線y=ax圍成的三角形面積為定值;
(2)若f(3)=3,是否存在實數(shù)m,k,使得f(x)+f(m-x)=k對于定義域內(nèi)的任意x都成立;
(3)若方程f(x)=t(x2-2x+3)|x|有三個解,求實數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案