【題目】已知a∈R,函數(shù)f(x)=ex1﹣ax的圖象與x軸相切. (Ⅰ)求f(x)的單調區(qū)間;
(Ⅱ)當x>1時,f(x)>m(x﹣1)lnx,求實數(shù)m的取值范圍.

【答案】解:(Ⅰ)f′(x)=ex1﹣a,設切點為(x0 , 0), 依題意, ,解得
所以f′(x)=ex1﹣1.
當x<1時,f′(x)<0;當x>1時,f′(x)>0.
故f(x)的單調遞減區(qū)間為(﹣∞,1),單調遞增區(qū)間為(1,+∞).
(Ⅱ)令g(x)=f(x)﹣m(x﹣1)lnx,x>0.
則g′(x)=ex1﹣m(lnx+ )﹣1,
令h(x)=g′(x),則h′(x)=ex1﹣m( + ),
(。┤鬽≤
因為當x>1時,ex1>1,m( + )<1,所以h′(x)>0,
所以h(x)即g′(x)在(1,+∞)上單調遞增.
又因為g′(1)=0,所以當x>1時,g′(x)>0,
從而g(x)在[1,+∞)上單調遞增,
而g(1)=0,所以g(x)>0,即f(x)>m(x﹣1)lnx成立.
(ⅱ)若m> ,
可得h′(x)在(0,+∞)上單調遞增.
因為h′(1)=1﹣2m<0,h′(1+ln(2m))>0,
所以存在x1∈(1,1+ln(2m)),使得h′(x1)=0,
且當x∈(1,x1)時,h′(x)<0,所以h(x)即g′(x)在(1,x1)上單調遞減,
又因為g′(1)=0,所以當x∈(1,x1)時,g′(x)<0,
從而g(x)在(1,x1)上單調遞減,
而g(1)=0,所以當x∈(1,x1)時,g(x)<0,即f(x)>m(x﹣1)lnx不成立.
縱上所述,k的取值范圍是(﹣∞, ]
【解析】(Ⅰ)求出函數(shù)的導數(shù),根據(jù)函數(shù)圖象與x軸相切,求出a的值,從而求出函數(shù)的單調區(qū)間;(Ⅱ)求出g(x)的導數(shù),通過討論m的范圍,結合函數(shù)的單調性以及f(x)>m(x﹣1)lnx,求出m的范圍即可.
【考點精析】本題主要考查了利用導數(shù)研究函數(shù)的單調性的相關知識點,需要掌握一般的,函數(shù)的單調性與其導數(shù)的正負有如下關系: 在某個區(qū)間內,(1)如果,那么函數(shù)在這個區(qū)間單調遞增;(2)如果,那么函數(shù)在這個區(qū)間單調遞減才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】學校舉辦的集體活動中,設計了如下有獎闖關游戲:參賽選手按第一關、第二關、第三關的順序依次闖關,若闖關成功,分別獲得1分、2分、3分的獎勵,游戲還規(guī)定,當選手闖過一關后,可以選擇得到相應的分數(shù),結束游戲;也可以選擇繼續(xù)闖下一關,若有任何一關沒有闖關成功,則全部分數(shù)都歸零,游戲結束。設選手甲第一關、第二關、第三關的概率分別為,,,選手選擇繼續(xù)闖關的概率均為,且各關之間闖關成功互不影響

(I)求選手甲第一關闖關成功且所得分數(shù)為零的概率

(II)設該學生所得總分數(shù)為X,X的分布列與數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐PABC中,PAAB,PABC,ABBC,PAABBC=2,D為線段AC的中點,E為線段PC上一點.

(1)求證:PABD

(2)求證:平面BDE平面PAC;

(3)PA平面BDE時,求三棱錐EBCD的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小明跟父母、爺爺奶奶一同參加《中國詩詞大會》的現(xiàn)場錄制,5人坐成一排.若小明的父母至少有一人與他相鄰,則不同坐法的總數(shù)為

A. 60 B. 72 C. 84 D. 96

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】重慶一中為了增強學生的記憶力和辨識力,組織了一場類似《最強大腦》的賽,兩隊各由4名選手組成,每局兩隊各派一名選手,除第三局勝者得2分外,其余各局勝者均得1分,每局的負者得0分.假設每局比賽隊選手獲勝的概率均為,且各局比賽結果相互獨立,比賽結束時隊的得分高于隊的得分的概率為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4﹣4:坐標系與參數(shù)方程 曲線C1的參數(shù)方程為 (α為參數(shù)),在以原點O為極點,x軸的正半軸為極軸的極坐標系中,曲線C2的極坐標方程為ρcos2θ=sinθ.
(1)求曲線C1的極坐標方程和曲線C2的直角坐標方程;
(2)若射線l:y=kx(x≥0)與曲線C1 , C2的交點分別為A,B(A,B異于原點),當斜率k∈(1, ]時,求|OA||OB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】非空數(shù)集A如果滿足:①0A;②若對x∈A,有 ∈A,則稱A是“互倒集”.給出以下數(shù)集: ①{x∈R|x2+ax+1=0}; ②{x|x2﹣4x+1<0};③{y|y= }.
其中“互倒集”的個數(shù)是(
A.3
B.2
C.1
D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)= 滿足:f(1)=1,f(﹣2)=4.
(1)求a,b的值,并探究是否存在常數(shù)c,使得對函數(shù)f(x)在定義域內的任意x,都有f(x)+f(c﹣x)=4成立;
(2)當x∈[1,2]時,不等式f(x)≤ 恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以下判斷正確的是(。

A. 命題“負數(shù)的平方是正數(shù)”不是全稱命題

B. 命題“”的否定是“

C. ”是“函數(shù)的最小正周期為”的必要不充分條件

D. ”是“函數(shù)是偶函數(shù)”的充要條件

查看答案和解析>>

同步練習冊答案