若點(diǎn)P(-2,2),Q(2,a)在直線2x-y+3=0的同一側(cè),則a的取值范圍是


  1. A.
    (7,+∞)
  2. B.
    [7,+∞)
  3. C.
    (-∞,-7)
  4. D.
    (-∞,-7]
A
2×(-2)-2+3=-3<0,即2×2-a+3=7-a<0,得a>7.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)點(diǎn)P是函數(shù)f(x)=sinωx的圖象C的一個(gè)對(duì)稱中心,若點(diǎn)P到圖象C的對(duì)稱軸上的距離的最小值
π
4
,則f(x)的最小正周期是(  )
A、2π
B、π
C、
π
4
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A的坐標(biāo)為(3,2),F(xiàn)為拋物線y2=2x的焦點(diǎn),若點(diǎn)P在拋物線上移動(dòng),當(dāng)|PA|+|PF|取得最小值時(shí),則點(diǎn)P的坐標(biāo)是(  )
A、(1,
2
B、(2,2)
C、(2,-2)
D、(3,
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:云南省昆明一中2012屆高三12月月考數(shù)學(xué)文科試題 題型:013

已知拋物線C的頂點(diǎn)為坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,直線y=x與拋物線C交于A、B兩點(diǎn),若點(diǎn)P(2,2)為AB的中點(diǎn),則拋物線C的方程是

[  ]
A.

y2=2x

B.

y2=4x

C.

y2=-4x

D.

y=4x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省高考模擬預(yù)測(cè)數(shù)學(xué)文試卷(解析版) 題型:解答題

一個(gè)袋中裝有四個(gè)形狀大小完全相同的球,球的編號(hào)分別為1,2,3,4.

(I)從袋中隨機(jī)抽取一個(gè)球,將其編號(hào)記為,然后從袋中余下的三個(gè)球中再隨機(jī)抽取一個(gè)球,將其編號(hào)記為.求關(guān)于的一元二次方程有實(shí)根的概率;

(II)先從袋中隨機(jī)取一個(gè)球,該球的編號(hào)為m,將球放回袋中,然后再從袋中隨機(jī)取一個(gè)球,該球的編號(hào)為n.若以 作為點(diǎn)P的坐標(biāo),求點(diǎn)P落在區(qū)域內(nèi)的概率.

【解析】第一問利用古典概型概率求解所有的基本事件數(shù)共12種,然后利用方程有實(shí)根,則滿足△=4a2-4b2≥0,即a2≥b2。,這樣求得事件發(fā)生的基本事件數(shù)為6種,從而得到概率。第二問中,利用所有的基本事件數(shù)為16種。即基本事件(m,n)有:(1,1)  (1,2)   (1,3)  (1,4)   (2,1)  (2,2)  (2,3)   (2,4)   (3,1)   (3,2)  (3,3)    (3,4)   (4,1)   (4,2)   (4,3)  (4,4)共16種。在求解滿足的基本事件數(shù)為(1,1) (2,1)  (2,2) (3,1) 共4種,結(jié)合古典概型求解得到概率。

(1)基本事件(a,b)有:(1,2)   (1,3)  (1,4)   (2,1)   (2,3)   (2,4)   (3,1)   (3,2)  (3,4)   (4,1)   (4,2)   (4,3)共12種。

有實(shí)根, ∴△=4a2-4b2≥0,即a2≥b2。

記“有實(shí)根”為事件A,則A包含的事件有:(2,1)   (3,1)   (3,2)  (4,1)   (4,2)   (4,3) 共6種。

∴PA.= 。   …………………6分

(2)基本事件(m,n)有:(1,1)  (1,2)   (1,3)  (1,4)   (2,1)  (2,2)  (2,3)   (2,4)   (3,1)   (3,2)  (3,3)    (3,4)   (4,1)   (4,2)   (4,3)  (4,4)共16種。

記“點(diǎn)P落在區(qū)域內(nèi)”為事件B,則B包含的事件有:

(1,1) (2,1)  (2,2) (3,1) 共4種!郟B.=

 

查看答案和解析>>

同步練習(xí)冊(cè)答案