【題目】已知函數(shù)).

(1)若處取到極值,求的值;

(2)若上恒成立,求的取值范圍;

(3)求證:當(dāng)時, .

【答案】(1) ;(2) ;(3)證明見解析.

【解析】試題分析:(1)根據(jù)極值的概念得到,可得到參數(shù)值;(2)轉(zhuǎn)化為函數(shù)最值問題,研究函數(shù)的單調(diào)性,分,,三種情況討論單調(diào)性,使得最小值大于等于0即可;(3)由(1)知令,當(dāng)時,當(dāng)時,,給x賦值:2,3,4,5等,最終證得結(jié)果.

試題解析:(1),

處取到極值,

,即,∴,

經(jīng)檢驗(yàn),時,處取到極小值.

(2),令),

當(dāng)時,上單調(diào)遞減,又,

時,,不滿足上恒成立.

當(dāng)時,二次函數(shù)開口向上,對稱軸為,過.

當(dāng),即時, 上恒成立,,從而上單調(diào)遞增,

,∴時,成立,滿足上恒成立;

當(dāng),即時,存在,使時, 單調(diào)遞減,時,單調(diào)遞增,

,又,∴,故不滿足題意.

當(dāng)時,二次函數(shù)開口向下,對稱軸為, 單調(diào)遞減, ,

,上單調(diào)遞減,又,∴時,,故不滿足題意綜上所述, .

(3)證明:由(1)知令,當(dāng)時, (當(dāng)且僅當(dāng)時取”),

當(dāng).即當(dāng)2,3,4,,有

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】命題p:x∈R,ax2﹣2ax+1>0,命題q:指數(shù)函數(shù)f(x)=ax(a>0且a≠1)為減函數(shù),則P是q的(  )

A.充分不必要條件B.必要不充分條件

C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(12分)

在平面直角坐標(biāo)系中,點(diǎn)到點(diǎn)的距離之和為4.

(1)試求點(diǎn)AM的方程.

(2)若斜率為的直線l與軌跡M交于C,D兩點(diǎn),為軌跡M上不同于C,D的一點(diǎn),記直線PC的斜率為,直線PD的斜率為,試問是否為定值.若是,求出該定值;若不同,請說出理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)=Asin(A>0,>0,<)在處取得最大值2,其圖象與x軸的相鄰兩個交點(diǎn)的距離為。

(1)求的解析式;

(2)求函數(shù) 的值域。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,一塊長方形區(qū)域,,在邊的中點(diǎn)處有一個可轉(zhuǎn)動的探照燈,其照射角始終為,設(shè),探照燈照射在長方形內(nèi)部區(qū)域的面積為.

1)求關(guān)于的函數(shù)關(guān)系式;

2)當(dāng)時,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以平面直角坐標(biāo)系的原點(diǎn)為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,兩種坐標(biāo)系中取相同的長度單位,直線的參數(shù)方程為是參數(shù)),圓的極坐標(biāo)方程為.

(Ⅰ)求直線的普通方程與圓的直角坐標(biāo)方程;

(Ⅱ)設(shè)曲線與直線的交于,兩點(diǎn),若點(diǎn)的直角坐標(biāo)為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為,且對任意正整數(shù),都有成立.記

求數(shù)列的通項公式;

(Ⅱ)設(shè),數(shù)列的前項和為,求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了反映國民經(jīng)濟(jì)各行業(yè)對倉儲物流業(yè)務(wù)的需求變化情況,以及重要商品庫存變化的動向,中國物流與采購聯(lián)合會和中儲發(fā)展股份有限公司通過聯(lián)合調(diào)查,制定了中國倉儲指數(shù).如圖所示的折線圖是2016年1月至2017年12月的中國倉儲指數(shù)走勢情況.

根據(jù)該折線圖,下列結(jié)論正確的是

A. 2016年各月的倉儲指數(shù)最大值是在3月份

B. 2017年1月至12月的倉儲指數(shù)的中位數(shù)為54%

C. 2017年1月至4月的倉儲指數(shù)比2016年同期波動性更大

D. 2017年11月的倉儲指數(shù)較上月有所回落,顯示出倉儲業(yè)務(wù)活動仍然較為活躍,經(jīng)濟(jì)運(yùn)行穩(wěn)中向好

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的函數(shù)滿足,且當(dāng)時,,對任意R,均有

(1)求證:;

(2)求證:對任意R,恒有;

(3)求證:是R上的增函數(shù);

(4)若,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案