直線l與圓x2+y2+2x-4y+a=0(a<3)相交于兩點A,B,弦AB的中點為(0,1),則直線l的方程為________.

x-y+1=0
分析:求出圓心的坐標,再求出弦中點與圓心連線的斜率,然后再求出弦所在直線的斜率,由點斜式寫出其方程,化為一般式.
解答:由已知,圓心O(-1,2),
設(shè)直線l的斜率為k,弦AB的中點為P(0,1),PO的斜率為kop,則=-1
∵l⊥PO,∴k•kop=k•(-1)=-1∴k=1
由點斜式得直線AB的方程為:y=x+1
故答案為:x-y+1=0
點評:考查求直線的方程,本題已知弦中點的坐標,再根據(jù)弦與弦心距對應(yīng)直線垂直求斜率k.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

過點P(2,3),傾斜角為60°的直線l與圓x2+y2=4相交于A,B兩點,則
PA
PB
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點(1,1)的直線l與圓x2+y2=4交于A,B兩點,若|AB|=2
2
,則直線l的方程為
x+y-2=0
x+y-2=0

查看答案和解析>>

同步練習(xí)冊答案
闂傚倸鍊搁崐鐑芥嚄閼哥數浠氬┑掳鍊楁慨瀵告崲濮椻偓閻涱喛绠涘☉娆愭闂佽法鍣﹂幏锟� 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾捐鈹戦悩鍙夋悙缂佺媭鍨堕弻銊╂偆閸屾稑顏�