【題目】解答題
(Ⅰ)已知 ,其中ai∈R,i=1,2,…10.
(i)求a0+a1+a2+…+a10;
(ii)求a7
(Ⅱ)2017年5月,北京召開“一帶一路”國際合作高峰論壇.組委會將甲、乙、丙、丁、戊五名志愿者分配到翻譯、導(dǎo)游、禮儀、司機(jī)四個(gè)不同的崗位,每個(gè)崗位至少有一人參加,且五人均能勝任這四個(gè)崗位.
(i)若每人不準(zhǔn)兼職,則不同的分配方案有幾種?
(ii)若甲乙被抽調(diào)去別的地方,剩下三人要求每人必兼兩職,則不同的分配方案有幾種?

【答案】解:(Ⅰ)(i)在(2x﹣1)10=a0+a1(x﹣1)+a2(x﹣1)2+…+a10(x﹣1)10中,

令x=2可得 a0+a1+a2+…+a10=310,

(ii)令x﹣1=y,則x=y+1;

∴(1+2y)10=a0+a1y+a2y2+…+a10y10

∴a7=C10727=15360;

(Ⅱ)(i)每個(gè)崗位至少有一人參加,每人不準(zhǔn)兼職,則有一個(gè)崗位2人參加,

故有分配方案 (種);

(ii)根據(jù)題意,4個(gè)崗位3個(gè)人參加,且每人身兼2職,不同的分配方案有

﹣( + ))=114(種)


【解析】(Ⅰ)(i)在(2x﹣1)10中,令x=2可得 a0+a1+a2+…+a10的值;(ii)令x﹣1=y,得出(1+2y)10=a0+a1y+a2y2+…+a10y10,利用二項(xiàng)展開式的通項(xiàng)公式求出a7的值;(Ⅱ)(i)先從5人中選出2人參加一個(gè)崗位,再分4組全排列;(ii)根據(jù)題意,求出4個(gè)崗位,3人中每人身兼兩職的不同分配方案.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題錯誤的是 ( )

A. 如果平面平面,那么平面內(nèi)一定存在直線平行于平面

B. 如果平面不垂直平面,那么平面內(nèi)一定不存在直線垂直于平面

C. 如果平面平面,平面平面,且,那么

D. 如果平面平面,那么平面內(nèi)所有直線都垂直于平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線l過點(diǎn)A(2,4),且被平行直線l1:x-y+1=0與l2:x-y-1=0所截的線段中點(diǎn)M在直線x+y-3=0上,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列例子中隨機(jī)變量ξ服從二項(xiàng)分布的有________.

隨機(jī)變量ξ表示重復(fù)拋擲一枚骰子n次中出現(xiàn)點(diǎn)數(shù)是3的倍數(shù)的次數(shù);

某射手擊中目標(biāo)的概率為0.9,從開始射擊到擊中目標(biāo)所需的射擊次數(shù)ξ;

有一批產(chǎn)品共有N件,其中M件為次品,采用有放回抽取方法,ξ表示n次抽取中出現(xiàn)次品的件數(shù)M<N;

有一批產(chǎn)品共有N件,其中M件為次品,采用不放回抽取方法,ξ表示n次抽取中出現(xiàn)次品的件數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在R上的可導(dǎo)函數(shù)f(x)滿足f(x)﹣f(﹣x)=2x3 , 當(dāng)x∈(﹣∞,0]時(shí)f'(x)<3x2 , 實(shí)數(shù)a滿足f(1﹣a)﹣f(a)≥﹣2a3+3a2﹣3a+1,則a的取值范圍是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a<﹣1,函數(shù)f(x)=|x3﹣1|+x3+ax(x∈R).
(Ⅰ)求函數(shù)f(x)的最小值;
(Ⅱ)已知存在實(shí)數(shù)m,n(m<n≤1),對任意t0∈(m,n),總存在兩個(gè)不同的t1 , t2∈(1,+∞),
使得f(t0)﹣2=f(t1)=f(t2),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓C: + =1(a>b>0)的左、右焦點(diǎn)分別為F1、F2 , 焦距為2,過點(diǎn)F2作直線l交橢圓于M、N兩點(diǎn),△F1MN的周長為8.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若直線l分別交直線y= x,y=﹣ x于P,Q兩點(diǎn),求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)有某批次同一型號的產(chǎn)品共10件,其中有8件合格品,2件次品.
(Ⅰ)某檢驗(yàn)員從中有放回地連續(xù)抽取產(chǎn)品2次,每次隨機(jī)抽取1件,求兩次都取到次品的概率;
(Ⅱ)若該檢驗(yàn)員從中任意抽取2件,用X表示取出的2件產(chǎn)品中次品的件數(shù),求X的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與x軸的正半軸重合,圓C的極坐標(biāo)是ρ=2asinθ,直線l的參數(shù)方程是 (t為參數(shù)).
(1)若a=2,M為直線l與x軸的交點(diǎn),N是圓C上一動點(diǎn),求|MN|的最大值;
(2)若直線l被圓C截得的弦長為 ,求a的值.

查看答案和解析>>

同步練習(xí)冊答案