甲、乙、丙三個車床加工的零件分別為350個,700個,1050個,現(xiàn)用分層抽樣的方法隨機抽取6個零件進行檢驗.
(1)求從甲、乙、丙三個車床中抽取的零件的件數(shù);
(2)從抽取的6個零件中任意取出2個,已知這兩個零件都不是甲車床加工的,求其中至少有一個是乙車床加工的零件.

(1)零件數(shù)分別為1,2,3;(2).

解析試題分析:本題主要考查分層抽樣、隨機事件的概率等基礎(chǔ)知識,同時考查分析問題解決問題的的能力和計算求解能力.第一問,利用分層抽樣中,列出表達式,解出每一層的零件個數(shù);第二問,根據(jù)第一問的結(jié)論將6個零件用字母表示,由于2個零件都不是甲車床加工的,所以將去掉,在剩下的5個中任意取2個,寫出所有情況,在其中找出符合題意的種數(shù),最后用這2個種數(shù)相除求概率即可.
試題解析:(Ⅰ)由抽樣方法可知,從甲、乙、丙三個車床抽取的零件數(shù)分別為1,2,3.     3分
(Ⅱ)即抽取的6個零件為
事件“已知這兩個零件都不是甲車床加工點”的可能結(jié)果為,,,,,,,,,共10種可能;     8分
事件“其中至少有一個是乙車床加工的”的可能結(jié)果為,,,,,共7種可能.          10分
故所求概率為
考點:1.分層抽樣;2.古典概型.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2014年2月21日,《中共中央關(guān)于全面深化改革若干重大問題的決定》明確:堅持計劃生育的基本國策,啟動實施一方是獨生子女的夫婦可生育兩個孩子的政策.為了解某地區(qū)城鎮(zhèn)居民和農(nóng)村居民對“單獨兩孩”的看法,某媒體在該地區(qū)選擇了3600人調(diào)查,就是否贊成“單獨兩孩”的問題,調(diào)查統(tǒng)計的結(jié)果如下表:


贊成
反對
無所謂
農(nóng)村居民
2100人
120人
y人
城鎮(zhèn)居民
600人
x人
z人
已知在全體樣本中隨機抽取1人,抽到持“反對”態(tài)度的人的概率為0.05.
(1)現(xiàn)在分層抽樣的方法在所有參與調(diào)查的人中抽取360人進行問卷訪談,問應(yīng)在持“無所謂”態(tài)度的人中抽取多少人?
(2)在持“反對”態(tài)度的人中,用分層抽樣的方法抽取6人,按每組3人分成兩組進行深入交流,求第一組中農(nóng)村居民人數(shù)的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

袋中有5只乒乓球,編號為1至5,從袋中任取3只,若以X表示取到的球中的最大號碼,試寫出X的概率分布.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某產(chǎn)品的三個質(zhì)量指標(biāo)分別為x,y,z,用綜合指標(biāo)S=x+y+z評價該產(chǎn)品的等級.若S≤4,則該產(chǎn)品為一等品.先從一批該產(chǎn)品中,隨機抽取10件產(chǎn)品作為樣本,其質(zhì)量指標(biāo)列表如下:

產(chǎn)品編號
A1
A2
A3
A4
A5
質(zhì)量指標(biāo)(x,y,z)
(1,1,2)
(2,1,1)
(2,2,2)
(1,1,1)
(1,2,1)
產(chǎn)品編號
A6
A7
A8
A9
A10
質(zhì)量指標(biāo)(x,y,z)
(1,2,2)
(2,1,1)
(2,2,1)
(1,1,1)
(2,1,2)
(1)利用上表提供的樣本數(shù)據(jù)估計該批產(chǎn)品的一等品率;
(2)在該樣品的一等品中,隨機抽取兩件產(chǎn)品,
①用產(chǎn)品編號列出所有可能的結(jié)果;
②設(shè)事件B為“在取出的2件產(chǎn)品中,每件產(chǎn)品的綜合指標(biāo)S都等于4”,求事件B發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

第17屆亞運會將于2014年9月18日至10月4日在韓國仁川進行,為了搞好接待工作,組委會招募了16名男志愿者和14名女志愿者,調(diào)查發(fā)現(xiàn),男、女志愿者中分別有10人和6人喜愛運動,其余不喜愛.
(1)根據(jù)調(diào)查數(shù)據(jù)制作2×2列聯(lián)表;
(2)根據(jù)列聯(lián)表的獨立性檢驗,能否認(rèn)為性別與喜愛運動有關(guān)?

參考數(shù)據(jù)
當(dāng)時,無充分證據(jù)判定變量有關(guān)聯(lián),可以認(rèn)為兩變量無關(guān)聯(lián);
當(dāng)時,有把握判定變量有關(guān)聯(lián);
當(dāng)時,有把握判定變量有關(guān)聯(lián);
當(dāng)時,有把握判定變量有關(guān)聯(lián).
(參考公式:,其中.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)y=x-1,令x=―4,―3,―2,-1,0,1,2,3,4,可得函數(shù)圖象上的九個點,在這九個點中隨機取出兩個點P1(x1,y1),P2(x2,y2),
(1)求P1,P2兩點在雙曲線xy=6上的概率;
(2)求P1,P2兩點不在同一雙曲線xy=k(k≠0)上的概率。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某校高一、高二兩個年級進行乒乓球?qū)官,每個年級選出3名學(xué)生組成代表隊,比賽規(guī)則是:①按“單打、雙打、單打”順序進行三盤比賽;②代表隊中每名隊員至少參加一盤比賽,但不能參加兩盤單打比賽.若每盤比賽中高一、高二獲勝的概率分別為,.
(1)按比賽規(guī)則,高一年級代表隊可以派出多少種不同的出場陣容?
(2)若單打獲勝得2分,雙打獲勝得3分,求高一年級得分ξ的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

正四面體ABCD的體積為V,P是正四面體ABCD的內(nèi)部的一個點.
(1)設(shè)“VPABCV”的事件為X,求概率P(X);
(2)設(shè)“VPABCV”且“VPBCDV”的事件為Y,求概率P(Y).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù)f(x)=x2+bx+c,其中b,c是某范圍內(nèi)的隨機數(shù),分別在下列條件下,求事件A“f(1)≤5且f(0)≤3”發(fā)生的概率.
(1)若隨機數(shù)b,c∈{1,2,3,4}.
(2)已知隨機函數(shù)Rand( )產(chǎn)生的隨機數(shù)的范圍為{x|0≤x≤1},b,c是算法語句b="4*Rand(" )和c="4*Rand(" )的執(zhí)行結(jié)果.(注:符號“*”表示“乘號”)

查看答案和解析>>

同步練習(xí)冊答案