【題目】已知橢圓的離心率為,過焦點(diǎn)且垂直于軸的直線被橢圓所截得的弦長為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若經(jīng)過點(diǎn)的直線與橢圓交于不同的兩點(diǎn)是坐標(biāo)原點(diǎn),求的取值范圍.
【答案】(1)(2)
【解析】
(1)根據(jù)離心率以及弦長,結(jié)合,可知,可得結(jié)果.
(2)假設(shè)點(diǎn)坐標(biāo),根據(jù)斜率存在與否假設(shè)直線方程,并與橢圓方程聯(lián)立,使用韋達(dá)定理,表示出,結(jié)合不等式,可得結(jié)果.
解:(1)設(shè)橢圓的半焦距為.
因?yàn)檫^焦點(diǎn)且垂直于軸的直線交橢圓
所得的弦長為,所以,
得①因?yàn)闄E圓的離心率為,
所以②
又③
由①②③,解得.
故橢圓的標(biāo)準(zhǔn)方程是.
(2)當(dāng)直線的斜率不存在時(shí),
直線的方程為,聯(lián)立
解得或
則點(diǎn)的坐標(biāo)分別為
,或,.
所以
;
當(dāng)直線的斜率存在時(shí),
設(shè)直線的方程為.
聯(lián)立消去
得,
因?yàn)辄c(diǎn)在橢圓的內(nèi)部,
所以直線與橢圓一定有兩個(gè)不同的交點(diǎn).
則.
所以
化簡可得
則
化簡可得.
因?yàn)?/span>,所以,
所以,所以.
所以,
即,所以.
綜上,的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年慶祝中華人民共和國成立70周年閱兵式彰顯了中華民族從站起來、富起來邁向強(qiáng)起來的雄心壯志.閱兵式規(guī)模之大、類型之全均創(chuàng)歷史之最,編組之新、要素之全彰顯強(qiáng)軍成就.裝備方陣堪稱“強(qiáng)軍利刃”“強(qiáng)國之盾”,見證著人民軍隊(duì)邁向世界一流軍隊(duì)的堅(jiān)定步伐.此次大閱兵不僅得到了全中國人的關(guān)注,還得到了無數(shù)外國人的關(guān)注.某單位有10位外國人,其中關(guān)注此次大閱兵的有8位,若從這10位外國人中任意選取3位做一次采訪,則被采訪者中至少有2位關(guān)注此次大閱兵的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電視臺(tái)舉行文藝比賽,并通過網(wǎng)絡(luò)對(duì)比賽進(jìn)行直播.比賽現(xiàn)場有5名專家評(píng)委給每位參賽選手評(píng)分,場外觀眾可以通過網(wǎng)絡(luò)給每位參賽選手評(píng)分.每位選手的最終得分由專家評(píng)分和觀眾評(píng)分確定.某選手參與比賽后,現(xiàn)場專家評(píng)分情況如表;場外有數(shù)萬名觀眾參與評(píng)分,將評(píng)分按照[7,8),[8,9),[9,10]分組,繪成頻率分布直方圖如圖:
專家 | A | B | C | D | E |
評(píng)分 | 9.6 | 9.5 | 9.6 | 8.9 | 9.7 |
(1)求a的值,并用頻率估計(jì)概率,估計(jì)某場外觀眾評(píng)分不小于9的概率;
(2)從5名專家中隨機(jī)選取3人,X表示評(píng)分不小于9分的人數(shù);從場外觀眾中隨機(jī)選取3人,用頻率估計(jì)概率,Y表示評(píng)分不小于9分的人數(shù);試求E(X)與E(Y)的值;
(3)考慮以下兩種方案來確定該選手的最終得分:方案一:用所有專家與觀眾的評(píng)分的平均數(shù)作為該選手的最終得分,方案二:分別計(jì)算專家評(píng)分的平均數(shù)和觀眾評(píng)分的平均數(shù),用作為該選手最終得分.請直接寫出與的大小關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】南宋數(shù)學(xué)家楊輝在《詳解九章算法》和《算法通變本末》中,提出了一些新的垛積公式,所討論的高階等差數(shù)列與一般等差數(shù)列不同,前后兩項(xiàng)之差并不相等,但是逐項(xiàng)差數(shù)之差或者高次差成等差數(shù)列對(duì)這類高階等差數(shù)列的研究,在楊輝之后一般稱為“垛積術(shù)”.現(xiàn)有高階等差數(shù)列,其前7項(xiàng)分別為1,4,8,14,23,36,54,則該數(shù)列的第19項(xiàng)為( )(注:)
A.1624B.1024C.1198D.1560
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓柱底面半徑為1,高為,是圓柱的一個(gè)軸截面,動(dòng)點(diǎn)從點(diǎn)出發(fā)沿著圓柱的側(cè)面到達(dá)點(diǎn),其距離最短時(shí)在側(cè)面留下的曲線如圖所示.將軸截面繞著軸逆時(shí)針旋轉(zhuǎn)后,邊與曲線相交于點(diǎn).
(1)求曲線的長度;
(2)當(dāng)時(shí),求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的圖象在點(diǎn)處的切線與直線垂直.
(1)求的單調(diào)區(qū)間;
(2)若當(dāng)時(shí),恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,曲線,以為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)設(shè)點(diǎn)在曲線上,直線交曲線于點(diǎn),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)在拋物線: 上,直線: 與拋物線交于, 兩點(diǎn),且直線, 的斜率之和為-1.
(1)求和的值;
(2)若,設(shè)直線與軸交于點(diǎn),延長與拋物線交于點(diǎn),拋物線在點(diǎn)處的切線為,記直線, 與軸圍成的三角形面積為,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校藝術(shù)節(jié)對(duì)四件參賽作品只評(píng)一件一等獎(jiǎng),在評(píng)獎(jiǎng)揭曉前,甲,乙,丙,丁四位同學(xué)對(duì)這四件參賽作品預(yù)測如下:
甲說:“是或作品獲得一等獎(jiǎng)”; 乙說:“ 作品獲得一等獎(jiǎng)”;
丙說:“ 兩件作品未獲得一等獎(jiǎng)”; 丁說:“是作品獲得一等獎(jiǎng)”.
評(píng)獎(jiǎng)揭曉后,發(fā)現(xiàn)這四位同學(xué)中只有兩位說的話是對(duì)的,則獲得一等獎(jiǎng)的作品是_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com