精英家教網 > 高中數學 > 題目詳情

【題目】垃圾種類可分為可回收垃圾,干垃圾,濕垃圾,有害垃圾,為調查中學生對垃圾分類的了解程度某調查小組隨機抽取了某市的100名高中生,請他們指出生活中若干項常見垃圾的種類,把能準確分類不少于3項的稱為比較了解少于三項的稱為不太了解調查結果如下:

0

1

2

3

4

5

5項以上

男生(人)

1

10

17

14

14

10

4

女生(人)

0

8

10

6

3

2

1

1)完成如下列聯表并判斷是否有95%的把握認為了解垃圾分類與性別有關?

比較了解

不太了解

合計

男生

__________

__________

__________

女生

__________

__________

__________

合計

__________

__________

__________

2)從能準確分類不少于3項的高中生中,按照男、女生采用分層抽樣的方法抽取9人的樣本.

i)求抽取的女生和男生的人數;

ii)從9人的樣本中隨機抽取兩人,求男生女生都有被抽到的概率.

參考數據:

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

,.

【答案】1)列聯表見解析,沒有的把握認為了解垃圾分類與性別有關;(2)(i)女生2人,男生7人,(ii;

【解析】

1)根據題中數據完善題中的列聯表,并計算出的觀測值,利用臨界值表得出犯錯誤的概率,即可對題中結論的正誤進行判斷;

2)利用分層抽樣思想得出所抽取的男生人數為,女生人數為,將樣本中的名女生為、名男生為、、、、,列出所有的基本事件,然后利用古典概型的概率公式可求出所求事件的概率.

1)根據題意填得列聯表如下,

比較了解

不太了解

合計

男生

女生

合計

所以

所以沒有的把握認為了解垃圾分類與性別有關;

2)(i)抽取的女生人數是(人),男生人數是(人);

ii)記抽取的兩人男女都有為事件,記樣本中的名女生為、,名男生為、、、、.

從這9人中隨機抽取兩人,基本事件分別為:

、、、、、、

、、、、、

、、、、、

、、、

、、、

、、、、、種;

男生女生都有被抽到的基本事件為、、、、、、、、、、,共種,

故所求的概率為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某學生興趣小組隨機調查了某市100天中每天的空氣質量等級和當天到某公園鍛煉的人次,整理數據得到下表(單位:天):

鍛煉人次

空氣質量等級

[0200]

(200,400]

(400,600]

1(優(yōu))

2

16

25

2(良)

5

10

12

3(輕度污染)

6

7

8

4(中度污染)

7

2

0

1)分別估計該市一天的空氣質量等級為12,3,4的概率;

2)求一天中到該公園鍛煉的平均人次的估計值(同一組中的數據用該組區(qū)間的中點值為代表);

3)若某天的空氣質量等級為12,則稱這天空氣質量好;若某天的空氣質量等級為34,則稱這天空氣質量不好.根據所給數據,完成下面的2×2列聯表,并根據列聯表,判斷是否有95%的把握認為一天中到該公園鍛煉的人次與該市當天的空氣質量有關?

人次≤400

人次>400

空氣質量好

空氣質量不好

附:,

P(K2k)

0.050

0.010

0.001

k

3.841

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)當時,求函數的極值;

2)若函數在區(qū)間內存在零點,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數

1)若函數在定義域上的最大值為,求實數的值;

2)設函數,當時,對任意的恒成立,求滿足條件的實數的最小整數值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a,b,cdR,矩陣A 的逆矩陣A1.若曲線C在矩陣A對應的變換作用下得到直線y2x1,求曲線C的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2020年新年伊始,新型冠狀病毒來勢洶洶,疫情使得各地學生在寒假結束之后無法返校,教育部就此提出了線上教學和遠程教學,停課不停學的要求也得到了家長們的贊同.各地學校開展各式各樣的線上教學,某地學校為了加強學生愛國教育,擬開設國學課,為了了解學生喜歡國學是否與性別有關,該學校對100名學生進行了問卷調查,得到如下列聯表:

喜歡國學

不喜歡國學

合計

男生

20

50

女生

10

合計

100

1)請將上述列聯表補充完整,并判斷能否在犯錯誤的概率不超過0.001的前提下認為喜歡國學與性別有關系?

2)針對問卷調查的100名學生,學校決定從喜歡國學的人中按分層抽樣的方法隨機抽取6人成立國學宣傳組,并在這6人中任選2人作為宣傳組的組長,求選出的兩人均為女生的概率.

參考數據:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】、分別是橢圓的左、右焦點,、兩點分別是橢圓的上、下頂點,是等腰直角三角形,延長交橢圓點,且的周長為.

1)求橢圓的方程;

2)設點是橢圓上異于、的動點,直線、與直線分別相交于、兩點,點,試問:外接圓是否恒過軸上的定點(異于點)?若是,求該定點坐標;若否,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在脫貧攻堅中,某市教育局定點幫扶前進村戶貧困戶.駐村工作隊對這戶村民的貧困程度以及家庭平均受教育程度進行了調査,并將該村貧困戶按貧困程度分為“絕對貧困戶”與“相對貧困戶”,同時按家庭平均受教育程度分為“家庭平均受教育年限年”與“家庭平均受教育年限年”,具體調査結果如下表所示:

平均受教育年限

平均受教育年限

總計

絕對貧困戶

10

40

50

相對貧困戶

20

30

50

總計

30

70

100

1)為了參加扶貧辦公室舉辦的貧困戶“談心談話”活動,現通過分層抽樣從“家庭平均受教育年限年”的戶貧困戶中任意抽取戶,再從所抽取的戶中隨機抽取戶參加“談心談話”活動,求至少有戶是絕對貧困戶的概率;

2)根據上述表格判斷:是否有的把握認為貧困程度與家庭平均受教育程度有關?

參考公式:

參考數據:

0.050

0.010

0.005

0.001

3.841

6.635

7.879

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】過橢圓的左頂點斜率為2的直線,與橢圓的另一個交點為,與軸的交點為,已知.

1)求橢圓的離心率;

2)設動直線與橢圓有且只有一個公共點,且與直線相交于點,若軸上存在一定點,使得,求橢圓的方程.

查看答案和解析>>

同步練習冊答案