已知,則=___________________.
-1

試題分析:令,則
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,某單位準(zhǔn)備修建一個(gè)面積為600平方米的矩形場(chǎng)地(圖中)的圍墻,且要求中間用圍墻隔開,使得為矩形,為正方形,設(shè)米,已知圍墻(包括)的修建費(fèi)用均為800元每米,設(shè)圍墻(包括)的修建總費(fèi)用為元。
(1)求出關(guān)于的函數(shù)解析式;
(2)當(dāng)為何值時(shí),設(shè)圍墻(包括)的的修建總費(fèi)用最。坎⑶蟪的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某房地產(chǎn)開發(fā)公司計(jì)劃在一樓區(qū)內(nèi)建造一個(gè)長(zhǎng)方形公園ABCD,公園由長(zhǎng)方形休閑區(qū)A1B1C1D1和環(huán)公園人行道(陰影部分)組成.已知休閑區(qū)A1B1C1D1的面積為4000m2,人行道的寬分別為4m和10m(如圖所示).
(1)若設(shè)休閑區(qū)的長(zhǎng)和寬的比,求公園ABCD所占面積S關(guān)于x的函數(shù)解析式;
(2)要使公園所占面積最小,休閑區(qū)A1B1C1D1的長(zhǎng)和寬應(yīng)如何設(shè)計(jì)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

對(duì)于函數(shù)若存在成立,則稱的不動(dòng)點(diǎn).已知
(1)當(dāng)時(shí),求函數(shù)的不動(dòng)點(diǎn);
(2)若對(duì)任意實(shí)數(shù),函數(shù)恒有兩個(gè)相異的不動(dòng)點(diǎn),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

用總長(zhǎng)為14.8m的鋼條制作一個(gè)長(zhǎng)方體容器的框架,如果所制作容器的底面的一邊比另一邊長(zhǎng)0.5m,那么高為多少時(shí)容器的容積最大?并求出它的最大容積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某漁業(yè)公司年初用49萬元購買一艘捕魚船,第一年各種費(fèi)用6萬元,以后每年都增加2萬元,每年捕魚收益25萬元.
(1)問第幾年開始獲利?
(2)若干年后,有兩種處理方案:①年平均獲利最大時(shí),以18萬元出售該漁船;②總純收入獲利最大時(shí),以9萬元出售該漁船.問哪種方案最合算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

有一種密英文的明文(真實(shí)文)按字母分解,其中英文的a,b,c, ,z的26個(gè)字母(不分大小寫),依次對(duì)應(yīng)1,2,3, ,26這26個(gè)自然數(shù),見如下表格:
a
b
c
d
e
f
g
h
i
j
k
l
m
1
2
3
4
5
6
7
8
9
10
11
12
13
n
o
p
q
r
s
t
u
v
w
x
y
z
14
15
16
17
18
19
20
21
22
23
24
25
26
 
給出如下變換公式:

將明文轉(zhuǎn)換成密文,如,即變成;如,即變成.
(1)按上述規(guī)定,將明文譯成的密文是什么?
(2)按上述規(guī)定,若將某明文譯成的密文是,那么原來的明文是什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

命題“?x∈R,ex>cosx+x”的否定是( 。
A.?x0∈R,ex0<cosx0+x0ex0
B.?x∈R,ex<cosx+x
C.?x∈R,ex≤cosx+x
D.?x0∈R,ex0≤cosx0+x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

對(duì)向量a=(a1,a2),b=(b1,b2)定義一種運(yùn)算“?”:a?b=(a1,a2)?(b1,b2)=(a1b1,a2b2).已知?jiǎng)狱c(diǎn)P,Q分別在曲線y=sin x和y=f(x)上運(yùn)動(dòng),且=m?+n(其中O為坐標(biāo)原點(diǎn)),若向量m=(,3),n=(,0),則y=f(x)的最大值為________.

查看答案和解析>>

同步練習(xí)冊(cè)答案