【題目】已知在長方體ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是側(cè)棱BB1的中點(diǎn),則直線AE與平面A1ED1所成角的大小為_____.
【答案】
【解析】
建立空間直角坐標(biāo)系,得到相關(guān)點(diǎn)的坐標(biāo)后,求出直線AE的方向向量=(0,1,1)和平面A1ED1的法向量,然后利用向量的共線可得直線AE與平面A1ED1垂直,于是得所求角為.
以D為原點(diǎn),以DA,DC,DD1分別為x,y,z軸建立空間直角坐標(biāo)系,
則A(1,0,0),E(1,1,1),A1(1,0,2),D1(0,0,2),
于是=(0,1,1),=(0,1,-1),=(-1,0,0).
設(shè)平面A1ED1的法向量為,
則得
令,得.
所以∥,
故直線AE與平面A1ED1垂直,即所成角為90°.
故答案為90°
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,側(cè)棱垂直于底面,∠BAC=90°,AB=AA1=2,AC=1,點(diǎn)M和N分別為A1B1和BC的中點(diǎn).
(1)求證:AC⊥BM;
(2)求證:MN∥平面ACC1A1;
(3)求二面角M﹣BN﹣A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn , 且a2=3,S6=36.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn= ,求數(shù)列{an}的前n項(xiàng)和Tn .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列{an}前三項(xiàng)的和為﹣3,前三項(xiàng)的積為8.
(I)求等差數(shù)列{an}的通項(xiàng)公式;
(II)若a2 , a3 , a1成等比數(shù)列,求數(shù)列{|an|}的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A是單位圓x2+y2=1上的任意一點(diǎn),l是過點(diǎn)A與x軸垂直的直線,D是直線l與x軸的交點(diǎn),點(diǎn)M在直線l上,且滿足丨DM丨=m丨DA丨(m>0,且m≠1).當(dāng)點(diǎn)A在圓上運(yùn)動(dòng)時(shí),記點(diǎn)M的軌跡為曲線C.
(I)求曲線C的方程,判斷曲線C為何種圓錐曲線,并求焦點(diǎn)坐標(biāo);
(Ⅱ)過原點(diǎn)且斜率為k的直線交曲線C于P、Q兩點(diǎn),其中P在第一象限,它在y軸上的射影為點(diǎn)N,直線QN交曲線C于另一點(diǎn)H,是否存在m,使得對(duì)任意的k>0,都有PQ⊥PH?若存在,求m的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某調(diào)查機(jī)構(gòu)觀察了某地100個(gè)新生嬰兒的體重,并根據(jù)所得數(shù)據(jù)畫出了樣本的頻率分布直方圖如圖,則新生嬰兒的體重在[3.2,4.0)(kg)的有人.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E: + =1(a>b>0)過點(diǎn) ,且離心率e為 .
(1)求橢圓E的方程;
(2)設(shè)直線x=my﹣1(m∈R)交橢圓E于A,B兩點(diǎn),判斷點(diǎn)G 與以線段AB為直徑的圓的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方形的四個(gè)頂點(diǎn)A(﹣1,﹣1),B(1,﹣1),C(1,1),D(﹣1,1)分別在拋物線y=﹣x2和y=x2上,如圖所示,若將一個(gè)質(zhì)點(diǎn)隨機(jī)投入正方形ABCD中,則質(zhì)點(diǎn)落在圖中陰影區(qū)域的概率是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足an=3n﹣2,f(n)= + +…+ ,g(n)=f(n2)﹣f(n﹣1),n∈N* .
(1)求證:g(2)> ;
(2)求證:當(dāng)n≥3時(shí),g(n)> .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com