【題目】已知m=3 sinxdx,則二項式(a+2b﹣3c)m的展開式中ab2cm3的系數(shù)為

【答案】-6480
【解析】解:m=3 sinxdx=﹣3cosx =6,則二項式(a+2b﹣3c)6=[(2b﹣3c)+a]6展開式中含ab2c3的項
a(2b﹣3c)5;
對于(2b﹣3c)5 , 含b2c3的項為 (2b)2(﹣3c)3 ,
故含ab2c3的項的系數(shù)為 22 (﹣3)3=﹣6480,
所以答案是:﹣6480.
【考點精析】本題主要考查了定積分的概念的相關(guān)知識點,需要掌握定積分的值是一個常數(shù),可正、可負(fù)、可為零;用定義求定積分的四個基本步驟:①分割;②近似代替;③求和;④取極限才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 的焦點為,過點的直線交拋物線位于第一象限)兩點.

(1)若直線的斜率為,過點分別作直線的垂線,垂足分別為,求四邊形的面積;

(2)若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市準(zhǔn)備引進優(yōu)秀企業(yè)進行城市建設(shè). 城市的甲地、乙地分別對5個企業(yè)(共10個企業(yè))進行綜合評估,得分情況如莖葉圖所示.

(Ⅰ)根據(jù)莖葉圖,求乙地對企業(yè)評估得分的平均值和方差;

(Ⅱ)規(guī)定得分在85分以上為優(yōu)秀企業(yè). 若從甲、乙兩地準(zhǔn)備引進的優(yōu)秀企業(yè)中各隨機選取1個,求這兩個企業(yè)得分的差的絕對值不超過5分的概率.

注:方差

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)S是實數(shù)集R的非空子集,若對任意xyS,都有xy,xyxyS,則稱S為封閉集.下列命題:①集合S={ab|a,b為整數(shù)}為封閉集;②若S為封閉集,則一定有0∈S;③封閉集一定是無限集;④若S為封閉集,則滿足STR的任意集合T也是封閉集.其中真命題是________.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】給出下列三個等式:f(x+y)=f(x)f(y),f(xy)=f(x)+f(y),f(ax+by)=af(x)+bf(y)(a+b=1).下列選項中,不滿足其中任何一個等式的是(  )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,函數(shù).

(1)當(dāng)時,求函數(shù)的單調(diào)遞增區(qū)間;

(2)求函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長方體ABCD—A1B1C1D1中,ADAA11,AB2,點E在棱AB上.

)求異面直線D1EA1D所成的角;

)若平面D1EC與平面ECD的夾角大小為45°,求點B到平面D1EC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知集合A={|=},B={|<- 4或>2}.

(1) 若m= -2, 求A∩(RB)

(2)若AB=B,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)滿足,

求函數(shù)的解析式;

若關(guān)于x的不等式上恒成立,求實數(shù)t的取值范圍;

若函數(shù)在區(qū)間內(nèi)至少有一個零點,求實數(shù)m的取值范圍

查看答案和解析>>

同步練習(xí)冊答案