【題目】已知函數(shù),若關(guān)于的方程有個不同的實數(shù)解,則的所有可能的值構(gòu)成的集合為______.
【答案】
【解析】
求函數(shù)的導(dǎo)數(shù),判斷函數(shù)的極值,作出函數(shù)的圖象,設(shè),利用根與系數(shù)之間的關(guān)系得到的兩根之積,利用數(shù)形結(jié)合進(jìn)行討論求解即可.
函數(shù)的導(dǎo)數(shù)為,
由,得,遞增;
由,得或,遞減.
即有在處取得極小值;在處取得極大值,
作出的圖象,如圖所示:
關(guān)于的方程,
令,則,
由判別式,方程有兩個不等實根,
,
則原方程有一正一負(fù)實根.
而,
即當(dāng),則,此時和的圖象有兩個交點,與 的圖象有1個交點,此時共有3個交點,
當(dāng),則,此時和 的圖象有1個交點,與的圖象有2個交點,此時共有3個交點,
當(dāng),則,此時和 的圖象有3個交點,與的圖象有0交點,此時共有3個交點,
當(dāng),則,此時和 的圖象有2個交點,與的圖象有1個交點,此時共有3個交點,
當(dāng),則,此時和 的圖象有1個交點,與 的圖象有2個交點,此時共有3個交點,
當(dāng),則,此時和的圖象有0個交點,與的圖象有3個交點,此時共有3個交點,
綜上,方程恒有3個不同的實數(shù)解,即,
即的所有可能的值構(gòu)成的集合為,故答案為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓:的左、右焦點分別為,軸,直線交軸于點,,為橢圓上的動點,的面積的最大值為1.
(1)求橢圓的方程;
(2)過點作兩條直線與橢圓分別交于且使軸,如圖,問四邊形的兩條對角線的交點是否為定點?若是,求出定點的坐標(biāo);若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在上是增函數(shù),求實數(shù)的取值范圍;
(2)若函數(shù)在上的最小值為3,求實數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記無窮數(shù)列的前n項中最大值為,最小值為,令,數(shù)列的前n項和為,數(shù)列的前n項和為.
(1)若數(shù)列是首項為2,公比為2的等比數(shù)列,求;
(2)若數(shù)列是等差數(shù)列,試問數(shù)列是否也一定是等差數(shù)列?若是,請證明;若不是,請舉例說明;
(3)若,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校將從4名男生和4名女生中選出4人分別擔(dān)任辯論賽中的一、二、三、四辯手,其中男生甲不適合擔(dān)任一辯手,女生乙不適合擔(dān)任四辯手.現(xiàn)要求:如果男生甲入選,則女生乙必須入選.那么不同的組隊形式有_________種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,設(shè)點,定義,其中為坐標(biāo)原點,對于下列結(jié)論:
符合的點的軌跡圍成的圖形面積為8;
設(shè)點是直線:上任意一點,則;
設(shè)點是直線:上任意一點,則使得“最小的點有無數(shù)個”的必要條件是;
設(shè)點是圓上任意一點,則.
其中正確的結(jié)論序號為
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】義烏國際馬拉松賽,某校要從甲乙丙丁等人中挑選人參加比賽,其中甲乙丙丁人中至少有人參加且甲乙不同時參加,丙丁也不同時參加,則不同的報名方案有( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某研究機構(gòu)隨機調(diào)查了,兩個企業(yè)各100名員工,得到了企業(yè)員工月均收入的頻數(shù)分布表以及企業(yè)員工月均收入的統(tǒng)計圖如下:
企業(yè):
工資 | 人數(shù) |
5 | |
10 | |
20 | |
42 | |
18 | |
3 | |
1 | |
1 |
企業(yè):
(1)若將頻率視為概率,現(xiàn)從企業(yè)中隨機抽取一名員工,求該員工月均收入不低于5000元的概率;
(2)(i)若從企業(yè)的月均收入在員工中,按分層抽樣的方式抽取7人,而后在此7人中隨機抽取2人,則2人月均收入都不在的概率是多少?
(ii)若你是一名即將就業(yè)的大學(xué)生,根據(jù)上述調(diào)查結(jié)果,并結(jié)合統(tǒng)計學(xué)相關(guān)知識,你會選擇去哪個企業(yè)就業(yè),并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com