已知△ABC的三個(gè)內(nèi)角A、B、C成等差數(shù)列,且AB=1,BC=4,則邊BC上的中線AD的長(zhǎng)為
 
分析:先根據(jù)三個(gè)內(nèi)角A、B、C成等差數(shù)列和三角形內(nèi)角和為π可求得B的值,進(jìn)而利用AD為邊BC上的中線求得BD,最后在△ABD中利用余弦定理求得AD.
解答:解:∵△ABC的三個(gè)內(nèi)角A、B、C成等差數(shù)列
∴A+C=2B
∵A+B+C=π
∠B=
π
3

∵AD為邊BC上的中線
∴BD=2,
由余弦定理定理可得AD=
AB2+BD2-2AB•BD•cosB
=
3

故答案為:
3
點(diǎn)評(píng):本題主要考查等差中項(xiàng)和余弦定理,涉及三角形的內(nèi)角和定理,難度一般.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)頂點(diǎn)的A、B、C及平面內(nèi)一點(diǎn)P滿足
PA
+
PB
+
PC
=
AB
,下列結(jié)論中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)頂點(diǎn)A、B、C及平面內(nèi)一點(diǎn)P,若
PA
+
PB
+
PC
=
AB
,則點(diǎn)P與△ABC的位置關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)頂點(diǎn)ABC及平面內(nèi)一點(diǎn)P滿足:
PA
+
PB
+
PC
=
0
,若實(shí)數(shù)λ滿足:
AB
+
AC
=λ
AP
,則λ的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(1,3)、B(3,1)、C(-1,0),求BC邊上的高所在的直線方程.
(2)過(guò)橢圓
x2
16
+
y2
4
=1
內(nèi)一點(diǎn)M(2,1)引一條弦,使得弦被M點(diǎn)平分,求此弦所在的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知△ABC的三個(gè)頂點(diǎn)A,B,C及平面內(nèi)一點(diǎn)P滿足:
PA
+
PB
+
PC
=
0
,若實(shí)數(shù)λ 滿足:
AB
+
AC
AP
,則λ的值為( 。
A、3
B、
2
3
C、2
D、8

查看答案和解析>>

同步練習(xí)冊(cè)答案