【題目】設(shè)數(shù)列滿足
;
(1)若,求證:數(shù)列
為等比數(shù)列;
(2)在(1)的條件下,對于正整數(shù),若
這三項經(jīng)適當(dāng)排序后能構(gòu)成等差數(shù)列,求符合條件的數(shù)組
;
(3)若是
的前
項和,求不超過
的最大整數(shù).
【答案】(1)見解析;(2);(3)2016
【解析】
(1)結(jié)合的表達(dá)式,對
進(jìn)行恒等變形,這樣就能證明出數(shù)列
為等比數(shù)列;
(2)根據(jù)(1)寫出數(shù)列的通項公式,根據(jù)等差中項的概念分類討論最后得到答案;
(3)根據(jù)已知求出的表達(dá)式,求出
的表達(dá)式,利用裂項相消法求出不超過
的最大整數(shù).
(1)由,∴
,
即,又
,∴數(shù)列
是以1 為首項,2為公比的等比數(shù)列;
(2)由(1)知這三項經(jīng)適當(dāng)排序后能構(gòu)成等差數(shù)列;
①若,則
,∴
,左邊為偶數(shù),右邊為奇數(shù),∴等式不成立;
③若,同理也不成立;綜合①②③得,
;
(3)由,∴
,∴
;
由
;
∴.
∴不超過的最大整數(shù)為2016
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,且AB=1,BC=2, ∠ABC=60°,PA⊥平面ABCD,AE⊥PC于E,
下列四個結(jié)論:①AB⊥AC;②AB⊥平面PAC;③PC⊥平面ABE;④BE⊥PC.正確的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的右焦點為
,上頂點為
,直線
的斜率為
,且原點到直線
的距離為
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若不經(jīng)過點的直線
與橢圓
交于
兩點,且與圓
相切.試探究
的周長是否為定值,若是,求出定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)2020年清明節(jié)前后3天每天下雨的概率為60%,通過模擬實驗的方法來計算該地區(qū)這3天中恰好有2天下雨的概率:用隨機(jī)數(shù)(
,且
)表示是否下雨:當(dāng)
時表示該地區(qū)下雨,當(dāng)
時,表示該地區(qū)不下雨,從隨機(jī)數(shù)表中隨機(jī)取得20組數(shù)如下
332 714 740 945 593 468 491 272 073 445
992 772 951 431 169 332 435 027 898 719
(1)求出的值,并根據(jù)上述數(shù)表求出該地區(qū)清明節(jié)前后3天中恰好有2天下雨的概率;
(2)從2011年開始到2019年該地區(qū)清明節(jié)當(dāng)天降雨量(單位:)如下表:(其中降雨量為0表示沒有下雨).
時間 | 2011年 | 2012年 | 2013年 | 2014年 | 2015年 | 2016年 | 2017年 | 2018年 | 2019年 |
年份 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
降雨量 | 29 | 28 | 26 | 27 | 25 | 23 | 24 | 22 | 21 |
經(jīng)研究表明:從2011年開始至2020年, 該地區(qū)清明節(jié)有降雨的年份的降雨量與年份
成線性回歸,求回歸直線
,并計算如果該地區(qū)2020年(
)清明節(jié)有降雨的話,降雨量為多少?(精確到0.01)
參考公式:.
參考數(shù)據(jù):,
,
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在長方體中,
,
,
,平面
截長方體得到一個矩形
,且
,
.
(1)求截面把該長方體分成的兩部分體積之比;
(2)求直線與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了預(yù)測下月產(chǎn)品銷售情況,找出了近7個月的產(chǎn)品銷售量(單位:萬件)的統(tǒng)計表:
月份代碼 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
銷售量 |
但其中數(shù)據(jù)污損不清,經(jīng)查證,
,
.
(1)請用相關(guān)系數(shù)說明銷售量與月份代碼
有很強(qiáng)的線性相關(guān)關(guān)系;
(2)求關(guān)于
的回歸方程(系數(shù)精確到0.01);
(3)公司經(jīng)營期間的廣告宣傳費(單位:萬元)(
),每件產(chǎn)品的銷售價為10元,預(yù)測第8個月的毛利潤能否突破15萬元,請說明理由.(毛利潤等于銷售金額減去廣告宣傳費)
參考公式及數(shù)據(jù):,相關(guān)系數(shù)
,當(dāng)
時認(rèn)為兩個變量有很強(qiáng)的線性相關(guān)關(guān)系,回歸方程
中斜率和截距的最小二乘估計公式分別為
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓,
、
為橢圓的左、右焦點,
為橢圓上一點,且
.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)直線,過點
的直線交橢圓于
、
兩點,線段
的垂直平分線分別交直線
、直線
于
、
兩點,當(dāng)
最小時,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知函數(shù),它的導(dǎo)函數(shù)為
.
(1)當(dāng)時,求
的零點;
(2)若函數(shù)存在極小值點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“公平正義”是社會主義和諧社會的重要特征,是社會主義法治理念的價值追求.“考試”作為一種公平公正選拔人才的有效途徑,正被廣泛采用.每次考試過后,考生最關(guān)心的問題是:自己的考試名次是多少?自已能否被錄取?能獲得什么樣的職位? 某單位準(zhǔn)備通過考試(按照高分優(yōu)先錄取的原則)錄用名,其中
個高薪職位和
個普薪職位.實際報名人數(shù)為
名,考試滿分為
分.(一般地,對于一次成功的考試來說,考試成績應(yīng)服從正態(tài)分布. )考試后考試成績的部分統(tǒng)計結(jié)果如下:
考試平均成績是分,
分及其以上的高分考生
名.
(1)最低錄取分?jǐn)?shù)是多少?(結(jié)果保留為整數(shù))
(2)考生甲的成績?yōu)?/span>分,若甲被錄取,能否獲得高薪職位?若不能被錄取,請說明理由.
參考資料:(1)當(dāng)時,令
,則
.
(2)當(dāng)時,
,
,
.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com