已知雙曲線過點(3,-2),且與橢圓4x2+9y2=36有相同的焦點.
(1)求雙曲線的標準方程;
(2)求以雙曲線的右準線為準線的拋物線的標準方程
(3)求雙曲線的左準線與拋物線圍成的面積.
分析:(1)設雙曲線
x2
a2
-
y2
b2
=1
,(a>0,b>0).利用橢圓的方程可得c=
9-4
=
5
.l利用題意可得
a2+b2=5
9
a2
-
4
b2
=1
,解得即可;
(2)設拋物線的標準方程為y2=-2px,由雙曲線的標準方程可得其右準線方程為x=
a2
c
=
3
5
=
p
2
.解出p即可得出;
(3)利用微積分基本定理可得S=2
0
-
3
5
-
12
5
5
x
dx
,解出即可.
解答:解:(1)設雙曲線
x2
a2
-
y2
b2
=1
,(a>0,b>0)
由橢圓4x2+9y2=36化為
x2
9
+
y2
4
=1
,∴c=
9-4
=
5

由題意可得
a2+b2=5
9
a2
-
4
b2
=1
,解得
a2=3
b2=2

∴雙曲線的方程為
x2
3
-
y2
2
=1
;
(2)設拋物線的標準方程為y2=-2px.
由雙曲線的標準方程可得其右準線方程為x=
a2
c
=
3
5

3
5
=
p
2
,解得p=
6
5
5

∴拋物線的方程為y2=-
12
5
5
x
;
(3)所求的面積S=2
0
-
3
5
-
12
5
5
x
dx
=2×
2
3
12
5
5
(-x)
3
2
|
0
-
3
5
=
24
5
點評:熟練掌握圓錐曲線的標準方程及其性質,微積分基本定理等是解題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知雙曲線過點(3,-2),且與橢圓4x2+9y2=36有相同的焦點.
(Ⅰ)求雙曲線的標準方程;    
(Ⅱ)求以雙曲線的右準線為準線的拋物線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線過點(3,-2),且與橢圓4x2+9y2=36有相同焦點,則雙曲線的標準方程為
x2
3
-
y2
2
=1
x2
3
-
y2
2
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知雙曲線過點(3,-2),且與橢圓有相同的焦點.

(Ⅰ)求雙曲線的標準方程;

(Ⅱ)求以雙曲線的右準線為準線的拋物線的標準方程

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知雙曲線過點(3,-2),且與橢圓4x2+9y2=36有相同的焦點.
(Ⅰ)求雙曲線的標準方程;    
(Ⅱ)求以雙曲線的右準線為準線的拋物線的標準方程.

查看答案和解析>>

同步練習冊答案