【題目】如圖,甲船以每小時(shí)15 海里的速度向正北方航行,乙船按固定方向勻速直線航行,當(dāng)甲船位于A1處時(shí),乙船位于甲船的南偏西75°方向的B1處,此時(shí)兩船相距20海里,當(dāng)甲船航行40分鐘到達(dá)A2處時(shí),乙船航行到甲船的南偏西45°方向的B2處,此時(shí)兩船相距10海里,問(wèn)乙船每小時(shí)航行多少海里?

【答案】解:由已知得A1B1=20, ,A2B2=10, , 在△A1A2B2中,由余弦定理得: ,∴A1B2=10,
又A2B2=A1B2 , 得 ,∠B2A1B1=180°﹣75°﹣45°=60°,
又在△A1B1B2中,由余弦定理得: ,∴ ,
則乙船的速度 (海里)
答:乙船每小時(shí)航行 海里.
【解析】在△A1A2B2中,由余弦定理得A1B2 , 在△A1B1B2中,由余弦定理得B1B2 , 即可求出乙船的速度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)l為曲線C:y= 在點(diǎn)(1,0)處的切線.
(Ⅰ)求l的方程;
(Ⅱ)證明:除切點(diǎn)(1,0)之外,曲線C在直線l的下方.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】把正方形AA1B1B以邊AA1所在直線為軸旋轉(zhuǎn)900到正方形AA1C1C,其中D,E,F(xiàn)分別為B1A,C1C,BC的中點(diǎn).
(1)求證:DE∥平面ABC;
(2)求證:B1F⊥平面AEF;
(3)求二面角A﹣EB1﹣F的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了制作廣告牌,需在如圖所示的鐵片上切割出一個(gè)直角梯形,已知鐵片由兩部分組成,半徑為1的半圓及等腰直角三角形,其中,為裁剪出面積盡可能大的梯形鐵片(不計(jì)損耗),將點(diǎn)放在弧上,點(diǎn)放在斜邊上,且,設(shè).

(1)求梯形鐵片的面積關(guān)于的函數(shù)關(guān)系式;

2)試確定的值,使得梯形鐵片的面積最大,并求出最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 ,在四棱錐中, , 為棱的中點(diǎn), .

(1)證明: 平面;

(2)若二面角的大小為,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四組函數(shù),表示同一函數(shù)的是(
A.f(x)= ,g(x)=x
B.f(x)=x,g(x)=
C.f(x)=lnx2 , g(x)=2lnx
D.f(x)=logaax(a>0,a≠1),g(x)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)移動(dòng)通信公司早前推出全球通移動(dòng)電話資費(fèi)個(gè)性化套餐”,具體方案如下:

方案代號(hào)

基本月租(元)

免費(fèi)時(shí)間(分鐘)

超過(guò)免費(fèi)時(shí)間的話費(fèi)(元/分鐘)

1

30

48

060

2

98

170

060

3

168

330

050

4

268

600

045

5

388

1000

040

6

568

1700

035

7

788

2588

030

I)寫(xiě)出套餐中方案的月話費(fèi)(元)與月通話量(分鐘)(月通話量是指一個(gè)月內(nèi)每次通話用時(shí)之和)的函數(shù)關(guān)系式;

II)學(xué)生甲選用方案,學(xué)生乙選用方案,某月甲乙兩人的電話資費(fèi)相同,通話量也相同,求該月學(xué)生甲的電話資費(fèi);

III)某用戶的月通話量平均為320分鐘,則在表中所列出的七種方案中,選擇哪種方案更合算,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法中,正確的是
①任取x>0,均有3x>2x
②當(dāng)a>0,且a≠1時(shí),有a3>a2;
③y=( x是減函數(shù);
④函數(shù)f(x)在x>0時(shí)是增函數(shù),x<0也是增函數(shù),所以f(x)是增函數(shù);
⑤若函數(shù)f(x)=ax2+bx+2與x軸沒(méi)有交點(diǎn),則b2﹣8a<0且a>0;
⑥y=x2﹣2|x|﹣3的遞增區(qū)間為[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)集合A={x|x+2<0},B={x|(x+3)(x﹣1)>0}.
(1)求集合A∩B;
(2)若不等式ax2+2x+b>0的解集為A∪B,求a,b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案