已知x,y∈R+,x+y=2,求
2
x
+
1
y
的最小值及相應(yīng)的x,y值.
分析:
2
x
+
1
y
=
1
2
(
2
x
+
1
y
)(x+y)
,利用基本不等式,可得結(jié)論.
解答:解:∵x,y∈R+,x+y=2,
2
x
+
1
y
=
1
2
(
2
x
+
1
y
)(x+y)
=
1
2
(3+
x
y
+
2y
x
)
1
2
(3+2
2
)

當(dāng)且僅當(dāng)
x
y
=
2y
x
,即x=4-2
2
,y=2
2
-2
時(shí),
2
x
+
1
y
的最小值為
1
2
(3+2
2
)
點(diǎn)評:本題考查基本不等式的運(yùn)用,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y∈R+,x+y=p,xy=s,有下列命題其中正確命題的序號(hào)是( 。
A、如果s是定值,那么當(dāng)且僅當(dāng)x=y時(shí)p的值最大B、如果s是定值,那么當(dāng)且僅當(dāng)x=y時(shí)p的值最小C、如果p是定值,那么當(dāng)且僅當(dāng)x=y時(shí)s的值最大D、如果p是定值,那么當(dāng)且僅當(dāng)x=y時(shí)s的值最小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y∈R+且x+y=4,求
1
x
+
2
y
的最小值.某學(xué)生給出如下解法:由x+y=4得,4≥2
xy
①,即
1
xy
1
2
②,又因?yàn)?span id="9llzlld" class="MathJye">
1
x
+
2
y
≥2
2
xy
③,由②③得
1
x
+
2
y
2
④,即所求最小值為
2
⑤.請指出這位同學(xué)錯(cuò)誤的原因
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y∈R,且(x+y)+2i=4x+(x-y)i,則( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x,y∈R.
(I)若x>0,y>0且
1
x
+
4
y
=1
,求x+y的最小值;
(II)若f(x)=
1,x≥0
-1,x<0
,求不等式x+(x+2)•f(x+2)≤5的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年江蘇省南通市高三考前100題(二) (解析版) 題型:解答題

(1).已知函數(shù)y=x+(x>-2),求此函數(shù)的最小值.
(2)已知x<,求y=4x-1+的最大值;
(3)已知x>0,y>0,且5x+7y=20,求xy的最大值;
(4)已知x,y∈R+且x+2y=1,求的最小值.

查看答案和解析>>

同步練習(xí)冊答案