已知雙曲線的中心在原點(diǎn),焦點(diǎn)在y軸上,焦距為16,離心率為數(shù)學(xué)公式,則雙曲線的方程為________.


分析:設(shè)出雙曲線方程,利用雙曲線的焦距為16,離心率為,建立方程組,可求雙曲線的幾何量,從而可得雙曲線的方程.
解答:設(shè)雙曲線方程為(a>0,b>0),則
∵雙曲線的焦距為16,離心率為
,∴c=8,a=6,∴b2=c2-a2=28
∴雙曲線方程為
故答案為:
點(diǎn)評:本題考查雙曲線的方程與幾何性質(zhì),考查學(xué)生的計(jì)算能力,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•梅州一模)已知有公共焦點(diǎn)的橢圓與雙曲線的中心為原點(diǎn),焦點(diǎn)在x軸上,左、右焦點(diǎn)分別為F1,F(xiàn)2且它們在第一象限的交點(diǎn)為P,△PF1F2是以PF1為底邊的等腰三角形,雙曲線的離心率的取值范圍為(1,2),則該橢圓的離心率的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年全國卷Ⅰ)(本小題滿分12分)

雙曲線的中心為原點(diǎn),焦點(diǎn)在軸上,兩條漸近線分別為,經(jīng)過右焦點(diǎn)垂直于的直線分別交兩點(diǎn).已知成等差數(shù)列,且同向.

(Ⅰ)求雙曲線的離心率;

(Ⅱ)設(shè)被雙曲線所截得的線段的長為4,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線的中心為原點(diǎn),焦點(diǎn)在軸上,兩條漸近線分別為,經(jīng)過右焦點(diǎn)垂直于的直線分別交兩點(diǎn).已知成等差數(shù)列,且同向.

   (Ⅰ)求雙曲線的離心率;

   (Ⅱ)設(shè)被雙曲線所截得的線段的長為4,求雙曲線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆河南省高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

(本題滿分12分)

雙曲線的中心為原點(diǎn),焦點(diǎn)在軸上,兩條漸近線分別為,經(jīng)過右焦點(diǎn)垂直于的直線分別交兩點(diǎn).已知成等差數(shù)列,且同向.

(Ⅰ)求雙曲線的離心率;

(Ⅱ)設(shè)被雙曲線所截得的線段的長為4,求雙曲線的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年廣東省高二期末測試數(shù)學(xué)(理) 題型:解答題

(本題滿分14分)雙曲線的中心為原點(diǎn),焦點(diǎn)在軸上,兩條漸近線分別為,經(jīng)過右焦點(diǎn)垂直于的直線分別交兩點(diǎn).已知成等差數(shù)列,且同向.

(Ⅰ)求雙曲線的離心率;

(Ⅱ)設(shè)被雙曲線所截得的線段的長為4,求雙曲線的方程.

 

 

查看答案和解析>>

同步練習(xí)冊答案