已知雙曲線的焦點(diǎn)與橢圓的焦點(diǎn)重合,且該橢圓的長軸長為,是橢圓上的的動點(diǎn).

1求橢圓標(biāo)準(zhǔn)方程;

2設(shè)動點(diǎn)滿足:,直線的斜率之積為,求證:存在定點(diǎn),

使得為定值,并求出的坐標(biāo);

3)若在第一象限,且點(diǎn)關(guān)于原點(diǎn)對稱,點(diǎn)的射影為,連接 并延長交橢圓于

點(diǎn)求證為直徑的圓經(jīng)過點(diǎn).

 

【答案】

1;(2)存在;3證明過程詳見試題解析.

【解析】

試題分析:1)由雙曲線的焦點(diǎn)與橢圓的焦點(diǎn)重合求出橢圓中的,再由,求出所求橢圓方程為;(2)先設(shè),由,結(jié)合橢圓的標(biāo)準(zhǔn)方程可以得到使得為定值;3要證明以為直徑的圓經(jīng)過點(diǎn),就是證明,詳見解析.

試題解析:1解:由題設(shè)可知:雙曲線的焦點(diǎn)為

所以橢圓中的

又由橢圓的長軸為4

故橢圓的標(biāo)準(zhǔn)方程為:

2證明:設(shè),由可得:

由直線的斜率之積為可得:

,即

①②可得:6

M、N是橢圓上,故

,即

由橢圓定義可知存在兩個定點(diǎn),使得動點(diǎn)P到兩定點(diǎn)距離和為定值;

3證明:設(shè)

由題設(shè)可知

由題設(shè)可知斜率存在且滿足.……③

代入可得:

點(diǎn)在橢圓,故

所以

因此以為直徑的圓經(jīng)過點(diǎn).

考點(diǎn):直線與圓錐曲線.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•浦東新區(qū)二模)(1)設(shè)橢圓C1
x2
a2
+
y2
b2
=1
與雙曲線C29x2-
9y2
8
=1
有相同的焦點(diǎn)F1、F2,M是橢圓C1與雙曲線C2的公共點(diǎn),且△MF1F2的周長為6,求橢圓C1的方程;
我們把具有公共焦點(diǎn)、公共對稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”.
(2)如圖,已知“盾圓D”的方程為y2=
4x            (0≤x≤3)
-12(x-4)  (3<x≤4)
.設(shè)“盾圓D”上的任意一點(diǎn)M到F(1,0)的距離為d1,M到直線l:x=3的距離為d2,求證:d1+d2為定值; 
(3)由拋物線弧E1:y2=4x(0≤x≤
2
3
)與第(1)小題橢圓弧E2
x2
a2
+
y2
b2
=1
2
3
≤x≤a
)所合成的封閉曲線為“盾圓E”.設(shè)過點(diǎn)F(1,0)的直線與“盾圓E”交于A、B兩點(diǎn),|FA|=r1,|FB|=r2且∠AFx=α(0≤α≤π),試用cosα表示r1;并求
r1
r2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
1
2
,橢圓的短軸端點(diǎn)與雙曲線
y2
2
-x2
=1的焦點(diǎn)重合,過P(4,0)且不垂直于x軸直線l與橢圓C相交于A、B兩點(diǎn).
(Ⅰ)求橢C的方程;
(Ⅱ)求
OA
OB
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(本小題滿分13分)

  如圖,已知橢圓的離心率為,以該橢圓上的點(diǎn)和橢圓的

  左、右焦點(diǎn)為頂點(diǎn)的三角形的周長為.一等軸雙曲線的頂點(diǎn)是該橢

  圓的焦點(diǎn),設(shè)為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線與橢圓的交點(diǎn)

  分別 為

   (Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程; 

   (Ⅱ)設(shè)直線、的斜率分別為,證明;

   (Ⅲ)是否存在常數(shù),使得恒成立?

      若存在,求的值;若不存在,請說明理由.

                                                             

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市浦東新區(qū)高三4月高考預(yù)測(二模)理科數(shù)學(xué)試卷(解析版) 題型:解答題

(1)設(shè)橢圓與雙曲線有相同的焦點(diǎn),是橢圓與雙曲線的公共點(diǎn),且的周長為,求橢圓的方程;

我們把具有公共焦點(diǎn)、公共對稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”.

(2)如圖,已知“盾圓”的方程為.設(shè)“盾圓”上的任意一點(diǎn)的距離為到直線的距離為,求證:為定值;

 

(3)由拋物線弧)與第(1)小題橢圓弧)所合成的封閉曲線為“盾圓”.設(shè)過點(diǎn)的直線與“盾圓”交于兩點(diǎn),),試用表示;并求的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(1)設(shè)橢圓C1數(shù)學(xué)公式與雙曲線C2數(shù)學(xué)公式有相同的焦點(diǎn)F1、F2,M是橢圓C1與雙曲線C2的公共點(diǎn),且△MF1F2的周長為6,求橢圓C1的方程;
我們把具有公共焦點(diǎn)、公共對稱軸的兩段圓錐曲線弧合成的封閉曲線稱為“盾圓”.
(2)如圖,已知“盾圓D”的方程為數(shù)學(xué)公式.設(shè)“盾圓D”上的任意一點(diǎn)M到F(1,0)的距離為d1,M到直線l:x=3的距離為d2,求證:d1+d2為定值;
(3)由拋物線弧E1:y2=4x(0數(shù)學(xué)公式)與第(1)小題橢圓弧E2數(shù)學(xué)公式數(shù)學(xué)公式)所合成的封閉曲線為“盾圓E”.設(shè)過點(diǎn)F(1,0)的直線與“盾圓E”交于A、B兩點(diǎn),|FA|=r1,|FB|=r2且∠AFx=α(0≤α≤π),試用cosα表示r1;并求數(shù)學(xué)公式的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案